Усеченная восьмиугольная мозаика порядка 6 - Truncated order-6 octagonal tiling

Усеченная восьмиугольная мозаика порядка 6
Усеченная восьмиугольная мозаика порядка 6
Модель диска Пуанкаре из гиперболическая плоскость
ТипГиперболическая равномерная мозаика
Конфигурация вершины6.16.16
Символ Шлефлит {8,6}
Символ Wythoff2 6 | 8
Диаграмма КокстераCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png
Группа симметрии[8,6], (*862)
ДвойнойШестиугольная черепица hexakis Order-8
ХарактеристикиВершинно-транзитивный

В геометрия, то усеченная восьмиугольная мозаика порядка 6 является равномерным замощением гиперболическая плоскость. Она имеет Символ Шлефли т {8,6}.

Равномерная окраска

Вторичная конструкция t {(8,8,3)} называется усеченная триоктаоктагональная мозаика:

H2 плитка 388-7.png

Симметрия

Усеченная восьмиугольная мозаика порядка 6 с зеркальными линиями, Узел CDel c1.pngCDel split1-88.pngCDel ветка c2.png

Двойственные к этому замощению представляют фундаментальные области симметрии [(8,8,3)] (* 883). Имеются 3 симметрии подгруппы малого индекса, построенные из [(8,8,3)] путем удаления и чередования зеркал. На этих изображениях основные области попеременно окрашены в черный и белый цвета, а на границах между цветами существуют зеркала.

Симметрию можно удвоить как 862 симметрия добавив зеркало, разделяющее фундаментальную область пополам.

Подгруппы малого индекса в [(8,8,3)] (* 883)
Индекс126
Диаграмма883 симметрия 000.png883 симметрия 0a0.png883 симметрия a0a.png883 симметрия z0z.png
Coxeter
(орбифолд )
[(8,8,3)] = Узел CDel c1.pngCDel split1-88.pngCDel ветка c2.png
(*883)
[(8,1+,8,3)] = CDel labelh.pngCDel node.pngCDel split1-88.pngCDel ветка c2.png = CDel ветка c2.pngCDel 4a4b-cross.pngCDel ветка c2.png
(*4343 )
[(8,8,3+)] = Узел CDel c1.pngCDel split1-88.pngCDel ветка h2h2.png
(3*44)
[(8,8,3*)] = Узел CDel c1.pngCDel split1-88.pngCDel branch.pngCDel labels.png
(*444444 )
Прямые подгруппы
Индекс2412
Диаграмма883 симметрия aaa.png883 симметрия abc.png883 симметрия zaz.png
Coxeter
(орбифолд)
[(8,8,3)]+ = CDel узел h2.pngCDel split1-88.pngCDel ветка h2h2.png
(883)
[(8,8,3+)]+ = CDel labelh.pngCDel node.pngCDel split1-88.pngCDel ветка h2h2.png = CDel ветка h2h2.pngCDel 4a4b-cross.pngCDel ветка h2h2.png
(4343)
[(8,8,3*)]+ = CDel узел h2.pngCDel split1-88.pngCDel branch.pngCDel labels.png
(444444)

Связанные многогранники и мозаика

Рекомендации

  • Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штрасс, Симметрии вещей 2008, ISBN  978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
  • «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN  0-486-40919-8. LCCN  99035678.

Смотрите также

внешняя ссылка