Медаль Филдса - Fields Medal

Медаль Филдса
FieldsMedalFront.jpg
Аверс медали Филдса
Присуждается заВыдающийся вклад в математика приписывается молодым ученым
СтранаВарьируется
ПредставленоМеждународный математический союз (ИДУ)
Награда (ы)CA $15,000
Первый награжден1936; 84 года назад (1936)
Последний награжденный2018 (2018)
Интернет сайтMathunion.org

В Медаль Филдса это приз, присуждаемый двум, трем или четырем математики до 40 лет в Международный Конгресс из Международный математический союз (ИДУ), встреча, которая проводится каждые четыре года.

Медаль Филдса считается одной из высших наград, которую может получить математик, и была названа наградой математика. Нобелевская премия,[1][2][3] хотя есть несколько ключевых отличий, включая частоту награждения, количество наград и возрастные ограничения. Согласно ежегодному исследованию академического превосходства, проведенному ARWU, медаль Филдса неизменно считается высшей наградой в области математики во всем мире,[4] и в другом обзоре репутации, проведенном IREG в 2013–2014 годах, медаль Филдса была присуждена сразу после Премия Абеля как вторая самая престижная международная награда по математике.[5][6]

Премия сопровождается денежной премией, которая с 2006 г. CA $15,000.[7][8] Название награды присвоено в честь Канадский математик Джон Чарльз Филдс.[9] Филдс сыграл важную роль в учреждении награды, разработке самой медали и финансировании денежной составляющей.[9]

Впервые медаль была вручена в 1936 году финскому математику. Ларс Альфорс и американский математик Джесси Дуглас, и он присуждается каждые четыре года, начиная с 1950 года. Его цель - дать признание и поддержку молодым математическим исследователям, которые внесли большой вклад. В 2014 году иранский математик Марьям Мирзахани стала первой женщиной-медалисткой Филдса.[10][11][12] Всего медалью Филдса награждено шестьдесят человек.

Последняя группа медалистов Филдса получила свои награды 1 августа 2018 года на церемонии открытия Международного конгресса ИДУ, проходившего в г. Рио де Жанейро, Бразилия.[13] Медаль, принадлежащая одному из четырех совместных победителей, Кошеру Биркару, была украдена вскоре после соревнований.[14] Через несколько дней ICM вручил Биркару новую медаль.[15]

Условия награды

Медаль Филдса долгое время считалась самой престижной наградой в области математики и часто описывается как награда. Нобелевская премия по математике.[1][2][3] в отличие от Нобелевская премия, медаль Филдса вручается только раз в четыре года. Медаль Филдса также имеет возрастное ограничение: получатель должен быть моложе 40 лет на 1 января того года, в котором медаль присуждена. Правило для детей младше 40 лет основано на желании Филдса, что, «хотя оно было признано за уже проделанную работу, оно в то же время предназначалось для поощрения дальнейших достижений со стороны получателей и стимула для возобновления усилий в часть других ".[16] Более того, физическое лицо может быть награждено только одной медалью Филдса; лауреаты не имеют права на получение медалей в будущем.[17]

Впервые награждена в 1936 году, по состоянию на 2018 год ее завоевали 60 человек.[18] За исключением одного доктора философии обладатель физики (Эдвард Виттен ),[19] только люди с докторской степенью. по математике завоевали медаль.[20]

Медалисты Филдса

ГодICM место расположенияМедалисты[21]Принадлежность
(при награждении)
Принадлежность
(текущий / последний)
Причины
1936Осло, НорвегияЛарс АльфорсУниверситет Хельсинки, ФинляндияГарвардский университет, НАС[22][23]"Награжден медалью за исследования покрытий поверхностей, связанных с Римановы поверхности из обратные функции всего и мероморфные функции. Открылись новые области анализа ».[24]
Джесси ДугласМассачусетский Институт Технологий, НАСГородской колледж Нью-Йорка, НАС[25][26]"Проделал важную работу над Проблема плато который связан с поиском минимальные поверхности соединяются и определяются какой-то фиксированной границей ».[24]
1950Кембридж, НАСЛоран ШварцУниверситет Нанси, ФранцияПарижский университет VII, Франция[27][28]"Разработал теория распределений, новое понятие обобщенной функции, мотивированное Дельта-функция Дирака теоретической физики ».[29]
Атле СельбергИнститут перспективных исследований, НАСИнститут перспективных исследований, НАС[30]«Развитые обобщения ситовые методы Вигго Бруна; добился серьезных результатов по нулям Дзета-функция Римана; дал элементарное доказательство теорема о простых числах (совместно с П. Эрдёшем), с обобщением на простые числа в произвольной арифметической прогрессии ».[29]
1954Амстердам, НидерландыКунихико КодайраУниверситет Принстона, НАС, Токийский университет, Япония и Институт перспективных исследований, НАС[31]Токийский университет, Япония[32]"Достиг основных результатов в теории гармонических интегралов и многочисленных приложений к Кэлериану и, в частности, к алгебраические многообразия. Он продемонстрировал когомологии пучков, что такие разновидности Многообразия Ходжа."[33]
Жан-Пьер СеррУниверситет Нанси, ФранцияКоллеж де Франс, Франция[34][35]"Достигнуты серьезные результаты на гомотопические группы сфер, особенно в использовании им метода спектральные последовательности. Переформулировал и расширил некоторые основные результаты теории комплексных переменных в терминах снопы."[33]
1958Эдинбург, ВЕЛИКОБРИТАНИЯКлаус РотУниверситетский колледж Лондона, ВЕЛИКОБРИТАНИЯИмперский колледж Лондон, ВЕЛИКОБРИТАНИЯ[36]"Решенный в 1955 г. знаменитый Проблема Ту-Сигеля относительно приближения к алгебраические числа к рациональное число и доказал в 1952 году, что последовательность без трех чисел в арифметической прогрессии имеет нулевую плотность (гипотеза Эрдеша и Турана 1935 года) ».[37]
Рене ТомСтрасбургский университет, ФранцияInstitut des Hautes Études Scientifiques, Франция[38]«В 1954 г. изобрел и развил теорию кобордизм в алгебраическая топология. Эта классификация многообразий фундаментально использовала теорию гомотопий и стала ярким примером общей теории когомологий ».[37]
1962Стокгольм, ШвецияЛарс ХёрмандерСтокгольмский университет, ШвецияЛундский университет, Швеция[39]"Работал в уравнения в частных производных. В частности, внес вклад в общую теорию линейных дифференциальных операторов. Вопросы возвращаются к одному из Проблемы Гильберта на съезде 1900 года ".[40]
Джон МилнорУниверситет Принстона, НАСУниверситет Стоуни-Брук, НАС[41]«Доказано, что 7-мерная сфера может иметь несколько дифференциальных структур; это привело к созданию поля дифференциальная топология."[40]
1966Москва, СССРМайкл АтьяОксфордский университет, ВЕЛИКОБРИТАНИЯЭдинбургский университет, ВЕЛИКОБРИТАНИЯ[42]"Работал совместно с Хирцебрухом в K-теория; доказали совместно с Зингером теорема об индексе эллиптических операторов на комплексных многообразиях; работал в сотрудничестве с Боттом, чтобы доказать теорему о неподвижной точке, относящуюся кФормула Лефшеца '."[43]
Пол КоэнСтэндфордский Университет, НАССтэндфордский Университет, НАС[44]"Используемая техника называется"принуждение "доказать независимость в теории множеств аксиомы выбора и обобщенного гипотеза континуума. Последняя проблема была первой из проблем Гильберта на Конгрессе 1900 года ".[43]
Александр ГротендикInstitut des Hautes Études Scientifiques, ФранцияНациональный центр научных исследований, Франция[45]"Создан на основе работы Вейля и Зариски и внес фундаментальный прогресс в алгебраическая геометрия. Он ввел идею K-теории (группы и кольца Гротендика). Революционный гомологическая алгебра в его знаменитом "Тохоку бумага ’."[43]
Стивен СмейлКалифорнийский университет в Беркли, НАСГородской университет Гонконга, Гонконг[46]"Работал в области дифференциальной топологии, где доказал обобщенная гипотеза Пуанкаре в размерности n≥5: всякое замкнутое n-мерное многообразие, гомотопически эквивалентное n-мерной сфере, гомеоморфно ей. Введен метод ручки для решения этой и связанных с ней проблем ».[43]
1970Отлично, ФранцияАлан БейкерКембриджский университет, ВЕЛИКОБРИТАНИЯТринити-колледж, Кембридж, ВЕЛИКОБРИТАНИЯ[47]"Обобщенный в Теорема Гельфонда-Шнайдера (решение седьмой проблемы Гильберта). Из этой работы он произвел трансцендентные числа, ранее не идентифицированные ».[48]
Хейсуке ХиронакаГарвардский университет, НАСКиотский университет, Япония[49][50]"Обобщенная работа Зарисского, который доказал для размерности ≤ 3 теорему о разрешение особенностей на алгебраическое многообразие. Хиронака доказал результаты в любом измерении ».[48]
Сергей НовиковМосковский Государственный Университет, СССРМатематический институт им. В. А. Стеклова, Россия

Московский Государственный Университет, РоссияУниверситет Мэриленда-Колледж-Парк, НАС[51][52]

"Добился важных успехов в топологии, наиболее известным из которых является доказательство топологической инвариантности Понтрягина классы дифференцируемого многообразия. Его работа включала исследование когомологий и гомотопий Пространства Тома."[48]
Джон Г. ТомпсонКембриджский университет, ВЕЛИКОБРИТАНИЯКембриджский университет, ВЕЛИКОБРИТАНИЯ

Университет Флориды, НАС[53]

"Доказано совместно с В. Фейт который все нециклические конечные простые группы имеют четный порядок. Расширение этой работы Томпсоном определило минимальные простые конечные группы, то есть простые конечные группы, собственные подгруппы которых разрешимы ».[48]
1974Ванкувер, КанадаЭнрико БомбьериПизанский университет, ИталияИнститут перспективных исследований, НАС[54]"Основные вклады в простых числах, в однолистные функции и местный Гипотеза Бибербаха, в теории функций многих комплексных переменных, а также в теории дифференциальных уравнений в частных производных и минимальных поверхностей, в частности, к решению Проблема Бернштейна в высших измерениях ".[55]
Дэвид МамфордГарвардский университет, НАСБрауновский университет, НАС[56]"Способствовал решению проблем существования и структуры разновидности модулей, многообразия, точки которых параметризуют классы изоморфизма некоторого типа геометрического объекта. Также внес несколько важных вкладов в теорию алгебраические поверхности."[55]
1978Хельсинки, ФинляндияПьер ДелиньInstitut des Hautes Études Scientifiques, ФранцияИнститут перспективных исследований, НАС[57]"Дали решение трех Гипотезы Вейля относительно обобщений Гипотеза Римана к конечным полям. Его работа во многом объединила алгебраическую геометрию и алгебраическую теорию чисел ».[58]
Чарльз ФефферманУниверситет Принстона, НАСУниверситет Принстона, НАС[59]«Внес несколько нововведений, которые пересмотрели изучение многомерного комплексного анализа, найдя правильные обобщения классических (низкоразмерных) результатов».[58]
Григорий МаргулисМосковский Государственный Университет, СССРЙельский университет, НАС[60]«Проведен инновационный анализ структуры Группы Ли. Его работы относятся к комбинаторике, дифференциальной геометрии, эргодической теории, динамическим системам и группам Ли ».[58]
Дэниел КвилленМассачусетский Институт Технологий, НАСОксфордский университет, ВЕЛИКОБРИТАНИЯ[61]"Главный архитектор высшего алгебраическая K-теория, новый инструмент, который успешно использовал геометрические и топологические методы и идеи для формулирования и решения основных проблем алгебры, особенно теории колец и теории модулей ».[58]
1982Варшава, ПольшаАлен КоннInstitut des Hautes Études Scientifiques, ФранцияInstitut des Hautes Études Scientifiques, Франция

Коллеж де Франс, ФранцияГосударственный университет Огайо, НАС[62]

"Внес вклад в теорию операторные алгебры, в частности, общая классификация и структурная теорема факторов типа III, классификация автоморфизмов гиперконечного фактора, классификация инъективных факторов и приложения теории C * -алгебры слоениям и дифференциальной геометрии в целом ".[63]
Уильям ТерстонУниверситет Принстона, НАСКорнелл Университет, НАС[64]"Революционное исследование топологии в 2-х и 3-х измерениях, показывающее взаимодействие между анализом, топологией и геометрией. Вынесена идея, что очень большой класс закрытых 3-х коллектор несут гиперболическую структуру ".[63]
Шинг-Тунг ЯуИнститут перспективных исследований, НАСГарвардский университет, НАС[65]"Внес вклад в дифференциальные уравнения, в том числе в Гипотеза Калаби в алгебраической геометрии гипотеза о положительной массе общей теории относительности, а также к действительным и сложным Уравнения Монжа – Ампера."[63]
1986Беркли, НАССаймон ДональдсонОксфордский университет, ВЕЛИКОБРИТАНИЯИмперский колледж Лондон, ВЕЛИКОБРИТАНИЯ[66] Университет Стоуни-Брук, НАС[67]«Получил медаль в первую очередь за работу по топологии четырехмерные многообразия, особенно для того, чтобы показать, что существует дифференциальная структура в четырехмерном евклидовом пространстве, которая разные от обычной структуры ".[68]
Герд ФальтингсУниверситет Принстона, НАСИнститут математики Макса Планка, Германия[69]«Используя методы арифметической алгебраической геометрии, он получил медаль прежде всего за доказательство Гипотеза Морделла."[68]
Майкл ФридманКалифорнийский университет в Сан-Диего, НАСMicrosoft Station Q, НАС[70]«Разработаны новые методы топологического анализа четырехмерные многообразия. Один из его результатов - доказательство четырехмерная гипотеза Пуанкаре."[68]
1990Киото, ЯпонияВладимир ДринфельдФизико-технический институт низких температур им. В.И. Веркина, СССР[71]Чикагский университет, НАС[72]"За его работу над квантовые группы и за его работу в области теории чисел ».
Воан Ф. Р. ДжонсКалифорнийский университет в Беркли, НАСКалифорнийский университет в Беркли, НАС,[73]

Университет Вандербильта, НАС[74]

"За открытие неожиданной связи между математическое исследование узлов - поле, которое восходит к 19 веку - и статистическая механика, форма математики, используемая для изучения сложных систем с большим количеством компонентов ".
Шигефуми МориКиотский университет, ЯпонияКиотский университет, Япония[75]«За доказательство гипотезы Хартсхорна и его работу по классификации трехмерных алгебраических многообразий».
Эдвард ВиттенИнститут перспективных исследований, НАСИнститут перспективных исследований, НАС[76]«Снова и снова он удивлял математическое сообщество блестящим применением физических знаний, ведущих к новым и глубоким математическим теоремам».[77]
1994Цюрих, ШвейцарияЖан БургейнInstitut des Hautes Études Scientifiques, ФранцияИнститут перспективных исследований, НАС[78]"Работа Бургейна затрагивает несколько центральных тем математического анализа: геометрия Банаховы пространства, выпуклость в больших размерностях, гармонический анализ, эргодическая теория и, наконец, нелинейные уравнения в частных производных из математической физики ».
Пьер-Луи ЛайонсПарижский университет 9, ФранцияКоллеж де Франс, Франция

École polytechnique, Франция[79]

«... Такое нелинейное уравнение в частных производных просто не имеет гладких или даже C1-решений, существующих за короткое время. ... Следовательно, единственный вариант - найти какой-то «слабое» решение. По сути, это обязательство состоит в том, чтобы выяснить, как разрешить одни виды «физически правильных» особенностей и как запретить другие. ... Лайонс и Крэндалл наконец-то раскрыли проблему, сосредоточив внимание на вязкие растворы, которые определяются в терминах определенных неравенств, выполняемых везде, где график решения касается с одной или другой стороны гладкой тестовой функцией ".
Жан-Кристоф ЙоккозУниверситет Париж-Юг 11, ФранцияКоллеж де Франс, Франция[80]«Доказательство стабильности свойств - динамическая устойчивость, например, искал Солнечная система, или же структурная устойчивость, что означает постоянство глобальных свойств системы при изменении параметров ".
Ефим ЗельмановУниверситет Висконсин-Мэдисон Чикагский университет, НАСМатематический институт им. В. А. Стеклова, Россия,

Калифорнийский университет в Сан-Диего, НАС[81]

"За его решение ограниченного Проблема Бернсайда."
1998Берлин, ГерманияРичард БорчердсКалифорнийский университет в Беркли, НАС

Кембриджский университет, ВЕЛИКОБРИТАНИЯ

Калифорнийский университет в Беркли, НАС[82]"За работу по внедрению вершинные алгебры, доказательство Гипотеза самогона и за открытие нового класса автоморфных бесконечных произведений ».
Тимоти ГауэрсКембриджский университет, ВЕЛИКОБРИТАНИЯКембриджский университет, ВЕЛИКОБРИТАНИЯ[83]"Уильям Тимоти Гауэрс внес важный вклад в функциональный анализ, широко используя методы теории комбинаций. Эти две области, очевидно, не имеют ничего общего друг с другом, и значительным достижением Гауэрса стало их плодотворное объединение ».
Максим КонцевичInstitut des Hautes Études Scientifiques, Франция

Университет Рутгерса, НАС

Institut des Hautes Études Scientifiques, Франция

Университет Рутгерса, НАС[84]

«Вклады в четыре задачи геометрии».
Кертис Т. МакмалленГарвардский университет, НАСГарвардский университет, НАС[85]"Он внес важный вклад в различные разделы теории динамических систем, такие как алгоритмическое исследование полиномиальных уравнений, изучение распределения точек решетки группы Ли, гиперболическая геометрия, голоморфная динамика и перенормировка карты интервала ".
2002Пекин, КитайЛоран ЛафоргInstitut des Hautes Études Scientifiques, ФранцияInstitut des Hautes Études Scientifiques, Франция[86]"Лоран Лафорг был награжден медалью Филдса за доказательство Переписка Ленглендса для полных линейных групп GLr (r≥1) над функциональными полями ».
Владимир ВоеводскийИнститут перспективных исследований, НАСИнститут перспективных исследований, НАС[87]«Он определил и развил мотивные когомологии и A1-гомотопическую теорию алгебраических многообразий; он доказал, что Гипотезы Милнора по К-теории полей ».
2006Мадрид, ИспанияАндрей ОкуньковУниверситет Принстона, НАСКолумбийский университет, НАС[88]«За его вклад в объединение вероятностей, теории представлений и алгебраической геометрии».
Григорий Перельман (отклоненный)НиктоСанкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Россия[89]"За вклад в геометрию и революционное понимание аналитической и геометрической структуры Риччи поток."
Теренс ТаоКалифорнийский университет в Лос-Анджелесе, НАСКалифорнийский университет в Лос-Анджелесе, НАС[90]«За его вклад в уравнения в частных производных, комбинаторику, гармонический анализ и аддитивную теорию чисел».
Венделин ВернерУниверситет Париж-Юг 11, ФранцияETH Цюрих, Швейцария[91]"За его вклад в развитие стохастическая эволюция Лёвнера, геометрия двумерного Броуновское движение, и конформная теория поля."
2010Хайдарабад, ИндияИлон ЛинденштраусЕврейский университет Иерусалима, Израиль

Университет Принстона, НАС

Еврейский университет Иерусалима, Израиль[92]"За результаты измерения жесткости в эргодическая теория, и их приложения к теории чисел ".
Нго Бо ЧауУниверситет Париж-Юг 11, Франция

Институт перспективных исследований, НАС

Чикагский университет, НАС

Вьетнамский институт перспективных исследований, Вьетнам[93]

"За доказательство Основная лемма в теории автоморфные формы через введение новых алгебро-геометрических методов ».
Станислав СмирновЖеневский университет, ШвейцарияЖеневский университет, Швейцария

Санкт-Петербургский государственный университет, Россия[94]

«За доказательство конформной инвариантности протекания и планарного Модель Изинга в статистической физике ».
Седрик ВилланиÉcole Normale Supérieure de Lyon, Франция

Institut Henri Poincaré, Франция

Лионский университет, Франция

Institut Henri Poincaré, Франция[95]

"За доказательства нелинейного Демпфирование Ландау и сходимость к равновесию для Уравнение Больцмана."
2014Сеул, Южная КореяАртур АвилаПарижский университет VII, Франция

CNRS, ФранцияInstituto Nacional de Matemática Pura e Aplicada, Бразилия

Цюрихский университет, Швейцария

Instituto Nacional de Matemática Pura e Aplicada, Бразилия

«За его глубокий вклад в теорию динамических систем, изменивший облик этой области, благодаря использованию мощной идеи перенормировки в качестве объединяющего принципа».[96]
Манджул БхаргаваУниверситет Принстона, НАСУниверситет Принстона, НАС[97][98][99]"За разработку новых мощных методов в геометрии чисел, которые он применил для подсчета колец малого ранга и определения среднего ранга эллиптические кривые."[96]
Мартин ХайрерУорикский университет, ВЕЛИКОБРИТАНИЯИмперский колледж Лондон, ВЕЛИКОБРИТАНИЯ«За выдающийся вклад в теорию стохастических уравнений в частных производных и, в частности, за создание теории структур регулярности для таких уравнений».[96]
Марьям МирзаханиСтэндфордский Университет, НАССтэндфордский Университет, НАС[100][101]"За выдающийся вклад в динамику и геометрию Римановы поверхности и их пространства модулей ".[96]
2018Рио де Жанейро, БразилияCaucher BirkarКембриджский университет, ВЕЛИКОБРИТАНИЯКембриджский университет, ВЕЛИКОБРИТАНИЯ"Для доказательства ограниченности Разновидности Фано и за взносы в программа минимальной модели."[102]
Алессио ФигаллиШвейцарский федеральный технологический институт Цюриха, ШвейцарияШвейцарский федеральный технологический институт Цюриха, Швейцария"За вклад в теорию оптимальный транспорт и его приложения в уравнения в частных производных, метрическая геометрия и вероятность."[102]
Питер ШольцеБоннский университет, ГерманияБоннский университет, Германия"Для преобразования арифметической алгебраической геометрии над p-адические поля через его введение перфектоидные пространства, с приложением к Представления Галуа, и для разработки новых теории когомологий."[102]
Акшай ВенкатешСтэндфордский Университет, НАСИнститут перспективных исследований, НАС[103]"За синтез аналитическая теория чисел, однородная динамика, топология, и теория представлений, который решил давние проблемы в таких областях, как равнораспределение арифметических объектов ".[102]

Достопримечательности

Впервые медаль была вручена в 1936 году финскому математику. Ларс Альфорс и американский математик Джесси Дуглас, и он присуждается каждые четыре года, начиная с 1950 года. Его цель - дать признание и поддержку молодым математическим исследователям, которые внесли большой вклад.

В 1954 г. Жан-Пьер Серр стал самым молодым обладателем медали Филдса в возрасте 27 лет. Он сохраняет эту награду.

В 1966 г. Александр Гротендик бойкотировал ICM, проведенный в Москве, в знак протеста против советских военных действий, происходящих в Восточной Европе.[104] Леон Мотчан, основатель и директор Institut des Hautes Études Scientifiques, присутствовал и принял Филдсовскую медаль Гротендика от его имени.[105]

В 1970 г. Сергей Новиков из-за ограничений, наложенных на него Советским правительством, не смог приехать на съезд в Отлично получить свою медаль.

В 1978 г. Григорий Маргулис из-за ограничений, наложенных на него Советским правительством, не смог приехать на съезд в Хельсинки получить свою медаль. Премию от его имени принял Жак Титс, который сказал в своем обращении: «Я не могу не выразить своего глубокого разочарования - несомненно, разделяемого многими здесь людьми - отсутствием Маргулиса на этой церемонии. Ввиду символического значения этого города Хельсинки, у меня действительно были основания надеюсь, что у меня будет шанс, наконец, встретить математика, которого я знаю только по его трудам и которого я испытываю с огромным уважением и восхищением ».[106]

В 1982 году конгресс должен был состояться в г. Варшава но пришлось перенести на следующий год из-за военное положение введен в Польше 13 декабря 1981 года. Награды были объявлены на девятой Генеральной ассамблее ИДУ в начале года и присуждены на Варшавском конгрессе 1983 года.

В 1990 г. Эдвард Виттен стал первым физик чтобы выиграть награду.

В 1998 году в ICM, Эндрю Уайлс был представлен председателем Комитета по медалям Филдса, Юрий Иванович Манин, с первой в истории серебряной табличкой ИДУ в знак признания его доказательства Последняя теорема Ферма. Дон Загир назвал мемориальную доску «квантованной медалью Филдса». В отчетах об этой награде часто упоминается, что на момент награждения Уайлс был старше предельного возраста для получения медали Филдса.[107] Хотя в 1994 году Уайлс был немного выше возрастного ограничения, его считали фаворитом на получение медали; однако пробел (позже устраненный Тейлор и Уайлс) в доказательстве было найдено в 1993 году.[108][109]

В 2006 г. Григорий Перельман, который доказал Гипотеза Пуанкаре, отказался от своей медали Филдса[7] и не присутствовал на съезде.[110]

В 2014, Марьям Мирзахани стала первой женщиной, а также первой иранкой, выигравшей медаль Филдса, и Артур Авила стал первым южноамериканец и Манджул Бхаргава стал первым человеком Индийский происхождение для этого.[111][112][113][114] Президент Рухани поздравил Мирзахани с этим заметным успехом.[10]

Медаль

Оборотная сторона медали Филдса

Медаль была разработана канадским скульптором. Р. Тэйт Маккензи.[115]

  • На аверсе Архимед и приписываемая ему цитата, которая гласит на латыни: «Transire suum pectus mundoque potiri» («Поднимись над собой и возьми мир»). Дата написана римскими цифрами и содержит ошибку («MCNXXXIII», а не «MCMXXXIII»).[116] Заглавными греческими буквами слово ΑΡXIMHΔΟΥΣ, или «Архимеда».
  • На оборотной стороне надпись (на латыни):
КОНГРЕГАТИ
EX TOTO ORBE
MATHEMATICI
OB SCRIPTA INSIGNIA
TRIBUERE

Перевод: «Математики, собравшиеся со всего мира, присудили [понятно, но не написано:« этот приз »] за выдающиеся труды».

На заднем плане - изображение Архимеда. могила, с резьбой, иллюстрирующей его теорему На сфере и цилиндре, за оливковой ветвью. (Это математический результат, которым Архимед, как сообщается, больше всего гордился: если дана сфера и описанный цилиндр одинаковой высоты и диаметра, соотношение между их объемами равно23.)

На оправе указано имя лауреата.

Женщины-получатели

С точки зрения самых престижных наград в КОРЕНЬ полей, лишь небольшая часть была присуждена женщинам. Медаль Филдса была получена только один раз женщиной, Марьям Мирзахани в 2014 году из 60 медалистов (на данный момент).[117][118]

Смотрите также

Примечания

Рекомендации

  1. ^ а б Болл, Филипп (2014). «Иранка - первая женщина, получившая высшую награду по математике». Природа. Дои:10.1038 / природа.2014.15686.
  2. ^ а б "Медаль Филдса". www-history.mcs.st-andrews.ac.uk. Получено 29 марта 2018.
  3. ^ а б "Медаль Филдса". Чикагский университет. Получено 29 марта 2018.
  4. ^ «Лучшая награда, Шанхайский рейтинг академических достижений 2017 | Шанхайский рейтинг - 2017». Shanghairanking.com. Получено 29 марта 2018.
  5. ^ Обсерватория IREG по академическому рейтингу и передовому опыту. Список международных академических наград IREG (PDF). Брюссель: Обсерватория IREG по академическому рейтингу и превосходству. Получено 3 марта 2018.
  6. ^ Чжэн, Хунтао; Лю, Няньцай (2015). «Картирование важных международных академических наград». Наукометрия. 104 (3): 763–791. Дои:10.1007 / s11192-015-1613-7.
  7. ^ а б «Гений математики лишился главного приза». BBC. 22 августа 2006 г.. Получено 22 августа 2006.
  8. ^ «Израильтянин получает Нобелевскую премию по математике», The Jerusalem Post
  9. ^ а б "О нас: Медаль Филдса". Институт Филдса, Университет Торонто. Получено 21 августа 2010.
  10. ^ а б «Президент Рухани поздравляет иранскую женщину с Нобелевской премией по математике». Агентство новостей Фарс. 14 августа 2014 г.. Получено 14 августа 2014.
  11. ^ «Премии ИДУ 2014». Международный математический союз. Получено 12 августа 2014.
  12. ^ корреспондент Саид Камали Дехган, Иран (16 июля 2017 г.). «Марьям Мирзахани: иранские газеты нарушают табу на хиджаб, отдавая дань уважения». Хранитель. ISSN  0261-3077. Получено 18 июля 2017.
  13. ^ «Научная программа: программа вкратце». Сайт мероприятия ICM 2018.
  14. ^ Филипс, Дон (1 августа 2018 г.). «Самая престижная медаль по математике в мире украдена через несколько минут после ее получения профессором». Хранитель. Получено 1 августа 2018.
  15. ^ Объявление ICM, 4 августа 2018 г.
  16. ^ Маккиннон Рим и Хоффман 2011, п. 183
  17. ^ «Правила для медали Филдса» (PDF). mathunion.org.
  18. ^ "Медаль Филдса". Международный математический союз. Получено 14 сентября 2020.
  19. ^ "Эдвард Виттен". Всемирный фестиваль науки. Получено 14 сентября 2020.
  20. ^ Коллар, Янош (2014). "Есть ли проклятие медали Филдса?" (PDF). Университет Принстона. Получено 14 сентября 2020.
  21. ^ "Медалисты Филдса, в хронологическом порядке". Международный математический союз (ИДУ). 8 мая 2008 г.. Получено 25 марта 2009.
  22. ^ "Ларс Валериан Альфорс (1907–1996)" (PDF). Ams.org. Получено 31 марта 2017.
  23. ^ "Ларс Альфорс (1907–1996)". Гарвардский университет, факультет математики. 7 ноября 2004 г.. Получено 19 августа 2014.
  24. ^ а б "Полевые медали 1936 года". mathunion.org. Международный математический союз.
  25. ^ "Джесси Дуглас". Британская энциклопедия. 28 мая 2010 года. Получено 19 августа 2014.
  26. ^ Марио Дж. Микаллеф; Дж. Грей. «Работа Джесси Дугласа о минимальных поверхностях» (PDF). Wdb.ugr.es. Архивировано из оригинал (PDF) 6 октября 2014 г.. Получено 31 марта 2017.
  27. ^ "Лоран Моис Шварц". Школа математики и статистики Университета Сент-Эндрюс, Шотландия. 24 июня 2007 г.. Получено 19 августа 2014.
  28. ^ Шварц, Лоран (1 февраля 2001 г.). Un mathématicien aux prises avec le siècle [Математик борется со своим веком]. AMS: Birkhäuser. ISBN  978-3-0348-7584-4. Архивировано из оригинал 21 августа 2014 г.. Получено 21 августа 2014.
  29. ^ а б "Полевые медали 1950". mathunion.org. Международный математический союз.
  30. ^ «Вспоминая Атле Сельберга, 1917–2007» (PDF). Ams.org. Получено 31 марта 2017.
  31. ^ «Труды Международного конгресса математиков» (PDF). Mathunion.org. 1954. Получено 31 марта 2017.
  32. ^ Дональд С. Спенсер. "Кунихико Кодаира (1915–1997)" (PDF). Ams.org. Получено 31 марта 2017.
  33. ^ а б "Полевые медали 1954 года". mathunion.org. Международный математический союз.
  34. ^ "Жан-Пьер Серр" (PDF). Math.rug.nl. Получено 31 марта 2017.
  35. ^ "Жан-Пьер Серр". Британская энциклопедия. 5 февраля 1997 г.. Получено 19 августа 2014.
  36. ^ Маккиннон Рим и Хоффман 2011, п. 212
  37. ^ а б "Полевые медали 1958 года". mathunion.org. Международный математический союз.
  38. ^ "Рене Том" (PDF). Robertnowlan.com. Архивировано из оригинал (PDF) 27 мая 2016 г.. Получено 31 марта 2017.
  39. ^ "Дань Ларсу Хёрмандеру" (PDF). Smai.emath.fr. Получено 31 марта 2017.
  40. ^ а б "Полевые медали 1962 года". mathunion.org. Международный математический союз.
  41. ^ "Джон В. Милнор". Университет Стоуни-Брук. 5 марта 1997 г.. Получено 17 августа 2014.
  42. ^ "Сэр Майкл Ф. Атия: Премия Абеля" (PDF). Upcommons.upc.edu (на испанском). Получено 31 марта 2017.
  43. ^ а б c d "Полевые медали 1966 года". mathunion.org. Международный математический союз.
  44. ^ «Мемориальная резолюция - Пол Коэн (1934–2007)» (PDF). Стэнфорд Историческое общество. 2011. Архивировано с оригинал (PDF) 5 января 2015 г.. Получено 24 августа 2014.
  45. ^ "Александр Гротендик" (PDF). Math.ucdenver.edu. Получено 31 марта 2017.
  46. ^ "Проф. Стивен МАЙЛ (史梅爾)". Городской университет Гонконга. 5 апреля 2012 г.. Получено 18 августа 2014.
  47. ^ «Лауреаты». Фонд Гейдельбергского форума лауреатов (HLFF). 25 сентября 2013 г.. Получено 16 августа 2014.
  48. ^ а б c d "Полевые медали 1970 года". mathunion.org. Международный математический союз.
  49. ^ «Интервью с Хейсуке Хиронака» (PDF). Ams.org. Получено 31 марта 2017.
  50. ^ "Заслуженный профессор в отставке". Исследовательский институт математических наук, Киото, Япония. 26 мая 2007 г.. Получено 16 августа 2014.
  51. ^ «Интервью с Сергеем Петровичем Новиковым» (PDF). Mi.ras.ru. Получено 31 марта 2017.
  52. ^ «Новиков Сергей Петрович». Российская академия наук. 1 января 2012 г.. Получено 20 августа 2014.
  53. ^ "Джон Григгс Томпсон" (PDF). Abelprize.no. Получено 31 марта 2017.
  54. ^ Барточчи, Клаудио; Бетти, Ренато; Герраджио, Анджело; и др., ред. (2011). Vite Mathematiche [Математические жизни: главные герои двадцатого века от Гильберта до Уайлса] (Изд. 2011 г.). Springer. С. 2013–2014. ISBN  978-3642136054.
  55. ^ а б "Полевые медали 1974". mathunion.org. Международный математический союз.
  56. ^ "Дэвид Мамфорд". Отделение прикладной математики Университета Брауна. Получено 18 августа 2014.
  57. ^ "Пьер Делинь" (PDF). Abelprize.no. Получено 31 марта 2017.
  58. ^ а б c d "Полевые медали 1978". mathunion.org. Международный математический союз.
  59. ^ "CV: Чарльз Фефферман" (PDF). Получено 31 марта 2017.
  60. ^ "Математический факультет Йельского университета: Грегори А. Маргулис". Получено 16 марта 2015.
  61. ^ Фридлендер, Эрик; Грейсон, Дэниел (ноябрь 2012 г.). "Дэниэл Квиллен" (PDF). Уведомления AMS. 59 (10): 1392–1406. Дои:10.1090 / noti903. Получено 31 марта 2017.
  62. ^ "Ален Конн". 25 мая 2012 года. Получено 18 августа 2014.
  63. ^ а б c "Полевые медали и приз Неванлинны 1982". mathunion.org. Международный математический союз.
  64. ^ «Уильям П. Терстон, 1946–2012». 30 августа 2012 г.. Получено 18 августа 2014.
  65. ^ "Резюме: Шинг-Тунг Яу" (PDF). Doctoryau.com. Архивировано из оригинал (PDF) 25 октября 2017 г.. Получено 31 марта 2017.
  66. ^ «Саймон Дональдсон (профессор-исследователь Королевского общества)». Департамент математики, Имперский колледж, Королевские ворота, Лондон. 16 января 2008 г.. Получено 16 августа 2014.
  67. ^ "Саймон Дональдсон". Получено 16 марта 2015.
  68. ^ а б c "Полевые медали и приз Неванлинны 1986". mathunion.org. Международный математический союз.
  69. ^ «Лауреаты». Фонд Гейдельбергского форума лауреатов (HLFF). 6 октября 2013 г. Архивировано с оригинал 6 октября 2014 г.. Получено 16 августа 2014.
  70. ^ Роб Кирби (2012). "Майкл Х. Фридман" (PDF). Celebratio.org. Архивировано из оригинал (PDF) 6 октября 2014 г.
  71. ^ "Владимир Гершонович Дринфельд". Британская энциклопедия. 19 августа 2009 г.. Получено 2 сентября 2014.
  72. ^ "Владимир Гершонович Дринфельд". Школа математики и статистики Университета Сент-Эндрюс, Шотландия. 18 августа 2009 г.. Получено 16 августа 2014.
  73. ^ "Биографическая справка: Воан Ф. Р. Джонс". Калифорнийский университет в Беркли. 10 ноября 2001 г. Архивировано с оригинал 6 августа 2013 г.. Получено 16 августа 2014.
  74. ^ Солсбери, Дэвид (6 апреля 2011 г.). «Медалист Филдса присоединяется к факультету Вандербильта». Университет Вандербильта. Получено 17 мая 2011.
  75. ^ «Лауреаты». Фонд Гейдельбергского форума лауреатов (HLFF). 10 апреля 2014 г. Архивировано с оригинал 15 августа 2014 г.. Получено 16 августа 2014.
  76. ^ "Эдвард Виттен - Вита" (PDF). 2011. Архивировано с оригинал (PDF) 4 февраля 2012 г.. Получено 26 октября 2011.
  77. ^ Майкл Атья. «О творчестве Эдварда Виттена» (PDF). Mathunion.org. Архивировано из оригинал (PDF) 1 марта 2017 г.. Получено 31 марта 2017.
  78. ^ "Резюме: Жан Бургейн" (PDF). Math.ias.edu. Получено 31 марта 2017.
  79. ^ "Коллеж де Франс". College-de-france.fr. 16 декабря 2013 г.. Получено 18 августа 2014.
  80. ^ "Коллеж де Франс". College-de-france.fr. 16 декабря 2013 г.. Получено 18 августа 2014.
  81. ^ "Резюме: Ефим Зельманов" (PDF). Ime.usp.br. Получено 31 марта 2017.
  82. ^ «Лауреаты». Фонд Гейдельбергского форума лауреатов (HLFF). 10 апреля 2014 г. Архивировано с оригинал 6 октября 2014 г.. Получено 16 августа 2014.
  83. ^ "Уильям Тимоти Гауэрс". Британская энциклопедия. 28 марта 2009 г.. Получено 16 августа 2014.
  84. ^ "Резюме Максима Концевича". Institut des Hautes Études Scientifiques. 22 ноября 2009 г. Архивировано с оригинал 10 октября 2014 г.. Получено 16 августа 2014.
  85. ^ "Резюме: Кертис Т. Макмаллен" (PDF). Abel.math.harvard.edu. Получено 31 марта 2017.
  86. ^ "Биография Резюме". ihes. 6 декабря 2005 г.. Получено 19 августа 2014.
  87. ^ "Резюме: Владимир Воеводский" (PDF). Math.ias.edu. Получено 31 марта 2017.
  88. ^ «Математический факультет». Колумбийский университет, факультет математики. 20 декабря 2012 г.. Получено 19 августа 2014.
  89. ^ "Британская энциклопедия". Британская энциклопедия. 28 мая 2008 г.. Получено 19 августа 2014.
  90. ^ "Биографические данные и библиография Теренса Тао". UCLA Dept. of Math. 16 марта 2010 г.. Получено 19 августа 2014.
  91. ^ "Венделин ВЕРНЕР". ETH Zurich. 18 сентября 2013 г.. Получено 19 августа 2014.
  92. ^ "Нобель в HU". Еврейский университет Иерусалима. 5 июля 2011 г.. Получено 16 августа 2014.
  93. ^ "Нго Био Чау› Форум лауреатов Гейдельберга ". Архивировано из оригинал 7 февраля 2015 г.. Получено 16 марта 2015.
  94. ^ "Домашняя страница Станислава Смирнова". Получено 16 марта 2015.
  95. ^ "Резюме: Седрик Виллани" (PDF). Cedricvillani.org. Архивировано из оригинал (PDF) 23 июня 2016 г.. Получено 31 марта 2017.
  96. ^ а б c d «Полевые медали 2014». mathunion.org. Международный математический союз.
  97. ^ "Резюме: Манджул Бхаргава" (PDF). 2.maths.ox.ac.uk. Получено 31 марта 2017.
  98. ^ "Работа Манджула Бхаргавы" (PDF). Mathunion.org. Архивировано из оригинал (PDF) 13 июля 2017 г.. Получено 31 марта 2017.
  99. ^ "Факультет". Принстонский университет, факультет математики. 8 мая 2012. Архивировано с оригинал 25 декабря 2014 г.. Получено 19 декабря 2014.
  100. ^ «Интервью с научным сотрудником Марьям Мирзахани» (PDF).
  101. ^ «Математический факультет». Стэндфордский Университет. 22 января 2009 г.. Получено 19 декабря 2014.
  102. ^ а б c d «Полевые медали 2018». mathunion.org. Международный математический союз.
  103. ^ «Ученик факультета Акшай Венкатеш награжден медалью Филдса 2018».
  104. ^ Джексон, Аллин (октябрь 2004 г.). "Как будто вызванный из пустоты: жизнь Александра Гротендика" (PDF). Уведомления Американского математического общества. 51 (9): 1198. Получено 26 августа 2006.
  105. ^ «Этот математический месяц - август». Американское математическое общество. Архивировано из оригинал 11 августа 2010 г.
  106. ^ Биография Маргулиса, Школа математики и статистики Университета Сент-Эндрюс, Шотландия. Проверено 27 августа 2006 года.
  107. ^ Уайлс, Эндрю Джон В архиве 27 августа 2008 г. Wayback Machine, Encyclopdia Britannica. Проверено 27 августа 2006 года.
  108. ^ Лауреаты премии Филдса (1998), 2002 Международный математический конгресс. Проверено 27 августа 2006 года. В архиве 27 сентября 2007 г. Wayback Machine
  109. ^ «Борчердс, Гауэрс, Концевич и Макмаллен получают полевые медали» (PDF). Уведомления AMS. 45 (10): 1359. Ноябрь 1998 г.
  110. ^ Насар, Сильвия; Грубер, Дэвид (21 августа 2006 г.). «Множественная судьба: легендарная проблема и битва за ее решение». Житель Нью-Йорка. В архиве с оригинала 31 августа 2006 г.. Получено 24 августа 2006.
  111. ^ Работа Марьям Мирзахани, Пресс-релиз ИДУ 2014 г., по состоянию на 30 сентября 2014 г.
  112. ^ ЮНЕСКО (2015). Сложная формула: девушки и женщины в науке, технологиях, инженерии и математике в Азии (PDF). Париж, ЮНЕСКО. п. 23. ISBN  978-92-9223-492-8.
  113. ^ «Премии ИДУ 2014». Международный математический союз. Получено 12 августа 2014.
  114. ^ Саид Камали Дехган (16 июля 2017 г.). «Марьям Мирзахани: иранские газеты нарушают табу на хиджаб, отдавая дань уважения». Хранитель. ISSN  0261-3077. Получено 18 июля 2017.
  115. ^ "Институт Филдса - Медаль Филдса". Fields.utoronto.ca. 9 августа 1932 г.. Получено 21 августа 2010.
  116. ^ Кноблох, Эберхард (2008). «Общность и бесконечно малые величины в математике Лейбница: случай его арифметической квадратуры конических сечений и связанных кривых». В Гольденбауме, Урсуле; Джессеф, Дуглас (ред.). Бесконечно малые различия: споры между Лейбницем и его современниками. Вальтер де Грюйтер.
  117. ^ ИДУ. 2014 г. Работа Марьям Мирзахани. Пресс-релиз (Проверено 30 сентября 2014 г.)
  118. ^ ЮНЕСКО (2015). Сложная формула: девушки и женщины в науке, технологиях, инженерии и математике в Азии (PDF). Париж, ЮНЕСКО. п. 23. ISBN  978-92-9223-492-8.

дальнейшее чтение

внешняя ссылка