Эмирп - Emirp
An эмирп (основной написано наоборот) простое число что приводит к другому простому числу, когда его десятичная дробь цифры поменяны местами.[1] Это определение исключает связанные палиндромные простые числа. Период, термин обратимый прайм используется для обозначения того же, что и emirp, но может также неоднозначно включать палиндромные простые числа.
Последовательность эмиратов начинается 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733. , 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991, ... (последовательность A006567 в OEIS ).[1]
Все непалиндромные перестановочные простые числа эмирпы.
По состоянию на ноябрь 2009 г.[Обновить], самый большой известный эмирп равен 1010006+941992101×104999+1, обнаруженный Йенсом Крузом Андерсеном в октябре 2007 года.[2]
Термин «emirpimes» (единственное число) используется также в местах лечения полупростые Аналогичным образом. То есть emirpimes - это полупростое число, которое также является (отличным) полупростым числом после изменения его цифр на противоположное.
Другие базы
Эмирпы в база 12 являются (используя повернутые два и три для десяти и одиннадцати, соответственно):
15, 51, 57, 5Ɛ, 75, Ɛ5, 107, 117, 11Ɛ, 12Ɛ, 13Ɛ, 145, 157, 16Ɛ, 17Ɛ, 195, 19Ɛ, 1 ᘔ 7, 1Ɛ5, 507, 51Ɛ, 541, 577, 587, 591, 59Ɛ, 5Ɛ1, 5ƐƐ, 701, 705, 711, 751, 76Ɛ, 775, 785, 7 ᘔ 1, 7ƐƐ, 11, Ɛ15, Ɛ21, Ɛ31, Ɛ61, Ɛ67, 71, Ɛ91, Ɛ95, ƐƐ5, ƐƐ7, ...
Эмирпы с добавленными зеркальными свойствами
Есть подмножество эмиратов Икс, с зеркалом Иксм, так что Икс это уй простое, и Иксм это умй премьер. (Например, 73 - это 21-е простое число; его зеркало, 37, является 12-м простым числом; 12 - это зеркало 21.)
Рекомендации
- ^ а б Вайсштейн, Эрик В. «Эмирп». MathWorld.
- ^ Ривера, Карлос. "Задачи и головоломки: Головоломка 20. - Обратимые простые числа ". Проверено 17 декабря, 2007.
Этот номер статья - это заглушка. Вы можете помочь Википедии расширяя это. |