Равномерно выпуклое пространство - Uniformly convex space
В математика, равномерно выпуклые пространства (или же равномерно круглые пространства) являются распространенными примерами рефлексивный Банаховы пространства. Понятие равномерной выпуклости было впервые введено Джеймс А. Кларксон в 1936 г.
Определение
А равномерно выпуклое пространство это нормированное векторное пространство так что для каждого существует некоторое такое, что для любых двух векторов с и условие
означает, что:
Интуитивно понятно, что центр отрезка внутри единичный мяч должен находиться глубоко внутри единичного шара, если только сегмент не короткий.
Характеристики
- В единичная сфера можно заменить на закрытый блок мяч в определении. А именно нормированное векторное пространство равномерно выпуклый если и только если для каждого существует некоторое так что для любых двух векторов и в замкнутом единичном шаре (т.е. и ) с , надо (обратите внимание, что, учитывая , соответствующее значение может быть меньше, чем в исходном более слабом определении).
Доказательство |
---|
Часть «если» тривиальна. Наоборот, предположим теперь, что равномерно выпуклый и что как в заявлении, для некоторых фиксированных . Позволять быть ценностью соответствующий в определении равномерной выпуклости. Мы покажем, что , с . Если тогда и утверждение доказано. Аналогичный аргумент применим и в случае , поэтому можно считать, что . В этом случае, поскольку , оба вектора отличны от нуля, поэтому мы можем позволить и . У нас есть и аналогично , так и принадлежат единичной сфере и имеют расстояние . Следовательно, по нашему выбору , у нас есть . Следует, что и утверждение доказано. |
- В Теорема Мильмана – Петтиса утверждает, что каждый равномерно выпуклый Банахово пространство является рефлексивный, а обратное неверно.
- Каждая равномерно выпуклая Банахово пространство является пространством Радона-Рисса, т. е. если последовательность в равномерно выпуклом банаховом пространстве, слабо сходящаяся к и удовлетворяет тогда сильно сходится к , то есть, .
- А Банахово пространство равномерно выпукла тогда и только тогда, когда двойственная является равномерно гладкий.
- Всякое равномерно выпуклое пространство есть строго выпуклый. Интуитивно строгая выпуклость означает более сильную неравенство треугольника в любое время линейно независимы, а равномерная выпуклость требует, чтобы это неравенство выполнялось равномерно.
Примеры
- Каждое гильбертово пространство равномерно выпукло.
- Каждое замкнутое подпространство равномерно выпуклого банахова пространства равномерно выпукло.
- Неравенства Ханнера подразумевают, что Lп пробелы равномерно выпуклые.
- Наоборот, не является равномерно выпуклым.
Смотрите также
Рекомендации
- Кларксон, Дж. А. (1936). «Равномерно выпуклые пространства». Пер. Амер. Математика. Soc. Американское математическое общество. 40 (3): 396–414. Дои:10.2307/1989630. JSTOR 1989630..
- Ханнер, О. (1956). «О равномерной выпуклости и ". Ковчег Мат. 3: 239–244. Дои:10.1007 / BF02589410..
- Beauzamy, Бернар (1985) [1982]. Введение в банаховы пространства и их геометрию (Второе исправленное изд.). Северная Голландия. ISBN 0-444-86416-4.
- Пер Энфло (1972). «Банаховы пространства, которым можно задать эквивалентную равномерно выпуклую норму». Израильский математический журнал. 13 (3–4): 281–288. Дои:10.1007 / BF02762802.
- Линденштраус, Иорам и Беньямини, Йоав. Геометрический нелинейный функциональный анализ Публикации коллоквиума, 48. Американское математическое общество.