Формула Виэта - Viètes formula
В математика, Формула Вьете следующее бесконечный продукт из вложенные радикалы представляющая математическую константу π:
Он назван в честь Франсуа Виет (1540–1603), опубликовавший его в 1593 году в своей работе. Variorum de rebus mathematicis resporum, liber VIII.[1]
Значимость
В то время, когда Виете опубликовал свою формулу, методы приблизительный к (в принципе) произвольной точности было известно давно. Собственный метод Виэта можно интерпретировать как вариацию идеи Архимед аппроксимации окружности окружности периметром многогранного многоугольника,[1] используется Архимедом, чтобы найти приближение
Однако, опубликовав свой метод в виде математической формулы, Виет сформулировал первый пример бесконечного произведения, известного в математике:[2][3] и первый пример явной формулы для точного значения .[4][5] Как первая формула, представляющая число как результат бесконечного процесса, а не конечного вычисления, формула Вьете была отмечена как начало математический анализ[6] и даже в более широком смысле, как «рассвет современной математики».[7]
Используя его формулу, Виете вычислил с точностью до девяти десятичные цифры.[8] Однако это было не самое точное приближение к известный в то время как Персидский математик Джамшид аль-Каши рассчитал с точностью до девяти шестидесятеричный цифр и 16 десятичных цифр в 1424 году.[7] Вскоре после того, как Виете опубликовал свою формулу, Людольф ван Сеулен использовал близкий метод для вычисления 35 цифр , которые были опубликованы только после смерти ван Сеулена в 1610 году.[7]
Толкование и конвергенция
Формулу Виэта можно переписать и понимать как предел выражение
куда , с начальным условием .[9] Виет выполнил свою работу задолго до того, как в математике были разработаны концепции пределов и строгих доказательств сходимости; первое доказательство существования этого предела не было дано до тех пор, пока Фердинанд Рудио в 1891 г.[1][10]
В скорость конвергенции ограничения определяет количество членов выражения, необходимое для достижения заданного количества цифр точности. В случае формулы Виэта существует линейная зависимость между количеством членов и количеством цифр: произведение первых членов в пределе дает выражение для это примерно с точностью до цифры.[8][11] Этот коэффициент сходимости очень выгодно отличается от Уоллис продукт, более поздняя формула бесконечного произведения для . Хотя сам Виет использовал свою формулу для расчета только с точностью до девяти цифр ускоренный версия его формулы использовалась для расчета до сотен тысяч цифр.[8]
Связанные формулы
Формула Вьете может быть получена как частный случай формулы, данной более века спустя Леонард Эйлер, который обнаружил, что:
Подстановка в этой формуле дает:
Затем, выразив каждый член произведения справа как функцию от предыдущих терминов, используя формулу полуугла:
дает формулу Виэта.[1]
Также возможно вывести из формулы Виэта родственную формулу для который по-прежнему включает вложенные квадратные корни из двух, но использует только одно умножение:[12]
который можно компактно переписать как
Многие формулы, подобные формулам Вьете, включающие вложенные радикалы или бесконечные произведения тригонометрических функций, теперь известны как и другие константы, такие как Золотое сечение.[3][12][13][14][15][16][17][18]
Вывод
Виет получил свою формулу, сравнивая области из правильные многоугольники с и стороны вписаны в круг.[1][6] Первый член в продукте, √2/2, - отношение площадей квадрата и восьмиугольник, второй член - это отношение площадей восьмиугольника и шестиугольник и т. д. Таким образом, товар телескопы чтобы задать отношение площадей квадрата (начального многоугольника в последовательности) к окружности (предельный случай -гон). В качестве альтернативы, термины в продукте могут интерпретироваться как отношения периметры такой же последовательности многоугольников, начиная с отношения периметров Digon (диаметр круга, считая дважды) и квадрата, соотношение периметров квадрата и восьмиугольника и т. д.[19]
Возможен другой вывод на основе тригонометрические тождества и формулу Эйлера. формула двойного угла
можно доказать математическая индукция что для всех натуральных чисел ,
Период, термин идет в в пределе как уходит в бесконечность, откуда следует формула Эйлера. Формула Виете может быть получена из этой формулы заменой .[4]
Рекомендации
- ^ а б c d е Бекманн, Петр (1971). История (2-е изд.). Боулдер, Колорадо: The Golem Press. С. 94–95. ISBN 978-0-88029-418-8. МИСТЕР 0449960.
- ^ Де Смит, Майкл Дж. (2006). Математика для мистифицированных: исследование истории математики и ее связи с современной наукой и вычислительной техникой. ООО "Трубадор Паблишинг" с. 165. ISBN 9781905237814.
- ^ а б Морено, Сэмюэл Дж .; Гарсия-Кабальеро, Эстер М. (2013). «О формулах типа Вьетэ». Журнал теории приближений. 174: 90–112. Дои:10.1016 / j.jat.2013.06.006. МИСТЕР 3090772.
- ^ а б Моррисон, Кент Э. (1995). «Косинусные произведения, преобразования Фурье и случайные суммы». Американский математический ежемесячник. 102 (8): 716–724. arXiv:математика / 0411380. Дои:10.2307/2974641. JSTOR 2974641. МИСТЕР 1357488.
- ^ Олдхэм, Кейт Б.; Myland, Jan C .; Спаниер, Джером (2010). Атлас функций: с Equator, калькулятор функций Атласа. Springer. п. 15. ISBN 9780387488073.
- ^ а б Маор, Эли (2011). Тригонометрические наслаждения. Издательство Принстонского университета. С. 50, 140. ISBN 9781400842827.
- ^ а б c Борвейн, Джонатан М. (2013). «Жизнь Пи: от Архимеда до ENIAC и далее». Из Александрии через Багдад: Обзоры и исследования древнегреческих и средневековых исламских математических наук в честь Дж. Л. Берггрена (PDF). Springer. ISBN 9783642367359.
- ^ а б c Кременский, Рик (2008). " в тысячи цифр из формулы Виета ». Математический журнал. 81 (3): 201–207. Дои:10.1080 / 0025570X.2008.11953549. JSTOR 27643107.
- ^ Эймар, Пьер; Лафон, Жан-Пьер (2004). «2.1 Бесконечное произведение Вьете». Номер . Американское математическое общество. С. 44–46. ISBN 9780821832462.
- ^ Рудио, Ф. (1891). "Uber die Konvergenz einer von Vieta herrührenden eigentümlichen Produktentwicklung". Z. Math. Phys. 36: 139–140.
- ^ Ослер, Томас Дж. (2007). "Простой геометрический метод оценки ошибки при использовании продукта Виета для ". Международный журнал математического образования в науке и технологиях. 38 (1): 136–142. Дои:10.1080/00207390601002799.
- ^ а б Серви, Л. Д. (2003). «Вложенные квадратные корни из 2». Американский математический ежемесячник. 110 (4): 326–330. Дои:10.2307/3647881. JSTOR 3647881. МИСТЕР 1984573.
- ^ Ниблом М.А. (2012). «Некоторые закрытые оценки бесконечных произведений с вложенными радикалами». Математический журнал Скалистых гор. 42 (2): 751–758. Дои:10.1216 / RMJ-2012-42-2-751. МИСТЕР 2915517.
- ^ Левин, Аарон (2006). «Геометрическая интерпретация бесконечного произведения для постоянной лемнискаты». Американский математический ежемесячный журнал. 113 (6): 510–520. Дои:10.2307/27641976. JSTOR 27641976. МИСТЕР 2231136.
- ^ Левин, Аарон (2005). "Новый класс бесконечных продуктов, обобщающий формулу продукта Виете для ". Рамануджанский журнал. 10 (3): 305–324. Дои:10.1007 / s11139-005-4852-z. МИСТЕР 2193382.
- ^ Ослер, Томас Дж. (2007). «Виетоподобные произведения вложенных радикалов с числами Фибоначчи и Лукаса». Ежеквартальный отчет Фибоначчи. 45 (3): 202–204. МИСТЕР 2437033.
- ^ Столярский, Кеннет Б. (1980). «Отображение свойств, роста и уникальности произведений Виета (бесконечного косинуса)». Тихоокеанский математический журнал. 89 (1): 209–227. Дои:10.2140 / pjm.1980.89.209. МИСТЕР 0596932. Архивировано из оригинал на 2013-10-11. Получено 2013-10-11.
- ^ Аллен, Эдвард Дж. (1985). «Сплошные радикалы». Математический вестник. 69 (450): 261–263. Дои:10.2307/3617569. JSTOR 3617569.
- ^ Руммлер, Хансклав (1993). «Квадратная дырочка». Американский математический ежемесячник. 100 (9): 858–860. Дои:10.2307/2324662. JSTOR 2324662. МИСТЕР 1247533.
внешняя ссылка
- Viète's Variorum de rebus mathematicis resporum, liber VIII (1593) на Google Книги. Формула находится на второй половине п. 30.