Малый дитригональный икосододекаэдр - Small ditrigonal icosidodecahedron
| Малый дитригональный икосододекаэдр | |
|---|---|
| Тип | Равномерный звездный многогранник |
| Элементы | F = 32, E = 60 V = 20 (χ = −8) |
| Лица по сторонам | 20{3}+12{5/2} |
| Символ Wythoff | 3 | 5/2 3 |
| Группа симметрии | ячас, [5,3], *532 |
| Указатель ссылок | U30, C39, W70 |
| Двойной многогранник | Малый триамбический икосаэдр |
| Фигура вершины | (3.5/2)3 |
| Акроним Bowers | Сидтид |
В геометрия, то маленький дитригональный икосододекаэдр (или же малый дитригонарный икосододекаэдр) это невыпуклый однородный многогранник, индексируется как U30. Имеет 32 лица (20 треугольники и 12 пентаграммы ), 60 ребер и 20 вершин.[1] Он расширил Символ Шлефли а {5,3}, как измененный додекаэдр, и Диаграмма Кокстера ![]()
![]()
![]()
![]()
или же ![]()
![]()
![]()
.
Он построен из Треугольник Шварца (3 3 5⁄2) с Символ Wythoff 3 | 5⁄2 3. Его шестиугольник вершина фигуры чередует равносторонний треугольник и пентаграмма лица.
Связанные многогранники
Его выпуклый корпус регулярный додекаэдр. Он также делится своими расположение кромок с большой дитригональный икосододекаэдр (имеющий общие треугольные грани), дитригональный додекадодекаэдр (имеющий общие пентаграммы лица), и регулярные соединение пяти кубиков. Как простой многогранник, он также является усеченный икосаэдр гексакис где треугольники, соприкасающиеся с пятиугольниками, сделаны копланарными, а остальные вогнуты.
| а {5,3} | а {5 / 2,3} | б {5,5 / 2} |
|---|---|---|
Малый дитригональный икосододекаэдр | Большой дитригональный икосододекаэдр | Дитригональный додекадодекаэдр |
Додекаэдр (выпуклый корпус ) | Соединение пяти кубиков | Сферическое соединение 5 кубиков |
Рекомендации
- ^ Медер, Роман. "30: малый дитригональный икосододекаэдр". MathConsult.
Смотрите также
внешняя ссылка
| Этот многогранник -связанная статья является заглушка. Вы можете помочь Википедии расширяя это. |