K-теория категории - K-theory of a category
В алгебраический K-теория, то K-теория категория C (обычно снабженный какими-то дополнительными данными) представляет собой последовательность абелевы группы Kя(C) связанный с ним. Если C является абелева категория, нет необходимости в дополнительных данных, но в целом имеет смысл говорить о K-теории только после указания C структура точная категория, или Категория Вальдхаузена, или dg-категория, а возможно и другие варианты. Таким образом, существует несколько конструкций этих групп, соответствующих разного рода сооружениям, надетым на них. C. Традиционно K-теория C является определенный быть результатом подходящей конструкции, но в некоторых контекстах есть более концептуальные определения. Например, K-теория - это «универсальный аддитивный инвариант» dg-категорий[1] и маленький стабильные ∞-категории.[2]
Мотивация для этого понятия исходит из алгебраическая K-теория из кольца. Для кольца р Дэниел Квиллен в Квиллен (1973) представил два эквивалентных способа найти высшую K-теорию. В плюс строительство выражает Kя(р) с точки зрения р напрямую, но сложно доказать свойства результата, в том числе такие базовые, как функториальность. Другой способ - рассмотреть точную категорию проективный модули над р и установить Kя(р) быть K-теорией этой категории, определенной с помощью Q-конструкция. Этот подход оказался более полезным, и его можно было применить и к другим точным категориям. Потом Фридхельм Вальдхаузен в Вальдхаузен (1985) еще больше расширил понятие K-теории до самых разных категорий, включая категорию топологические пространства.
K-теория категорий Вальдхаузена
В алгебре S-конструкция это конструкция в алгебраическая K-теория который создает модель, которую можно использовать для определения высших K-групп. Это связано с Фридхельм Вальдхаузен и относится к категории с кофибрациями и слабыми эквивалентностями; такая категория называется Категория Вальдхаузена и обобщает точная категория. Кофибрацию можно рассматривать как аналог мономорфизм, а категория с корасслоениями - это категория, в которой, грубо говоря, мономорфизмы устойчивы относительно выталкивания.[3] По словам Вальдхаузена, буква «S» была выбрана для обозначения Грэм Б. Сигал.[4]
в отличие от Q-конструкция, которая дает топологическое пространство, S-конструкция дает симплициальный набор.
Подробности
В категория стрелки категории C - категория, объекты которой являются морфизмами в C и морфизмами которых являются квадраты в C. Пусть конечное упорядоченное множество рассматриваться как категория обычным образом.
Позволять C - категория с кофибрациями и пусть быть категорией, объекты которой являются функторами такой, что для , , кофибрация, и это вытеснение и . Категория определенная таким образом, сама по себе является категорией с кофибрациями. Следовательно, можно повторить построение, образуя последовательность. Эта последовательность представляет собой спектр называется K-теория спектр из C.
Теорема аддитивности
Большинство основных свойств алгебраической K-теории категорий являются следствием следующей важной теоремы.[5] Во всех доступных настройках есть его версии. Вот утверждение для категорий Вальдхаузена. Примечательно, что он используется, чтобы показать, что последовательность пространств, полученная повторной S-конструкцией, является Ω-спектр.
Позволять C быть Категория Вальдхаузена. Категория расширений имеет в качестве объектов последовательности в C, где первая карта - кофибрация, а факторное отображение, т.е. выталкивание первой по нулевой карте А → 0. Эта категория имеет естественную структуру Вальдхаузена, и забывчивый функтор из к C × C уважает это. В теорема аддитивности говорит, что индуцированное отображение на пространствах K-теории является гомотопической эквивалентностью.[6]
За dg-категории заявление аналогично. Позволять C - небольшая предтриангулированная dg-категория с полуортогональное разложение . Тогда отображение спектров K-теории K (C) → K (C1) ⊕ K (C2) является гомотопической эквивалентностью.[7] Фактически K-теория - это универсальный функтор, удовлетворяющий этому свойству аддитивности и Инвариантность Мориты.[1]
Категория конечных множеств
Рассмотрим категорию заостренный конечные множества. В этой категории есть объект для каждого натуральное число k, а морфизмами в этой категории являются функции которые сохраняют нулевой элемент. Теорема о Баррат, Придди и Квиллен говорит, что алгебраическая K-теория этой категории является сферический спектр.[4]
Разное
В более общем плане в абстрактной теории категорий K-теория категории - это тип декатегоризация в котором набор создается из класса эквивалентности объектов в стабильной (∞, 1) -категории, где элементы набора наследуют Абелева группа структура из точные последовательности в категории.[8]
Групповой метод завершения
В Группа Гротендик конструкция является функтором из категории колец в категорию абелевых групп. Выше K-теория должна быть функтором из категории колец, но из категории более высоких объектов, таких как симплициальные абелевы группы.
Топологические гомологии Хохшильда
Вальдхаузен ввел идею отображения следов из алгебраической K-теория кольца к своему Гомологии Хохшильда; с помощью этой карты можно получить информацию о K-теория из гомологии Хохшильда. Бёкстедт факторизовал это отображение следов, что привело к идее функтора, известного как топологические гомологии Хохшильда кольца Спектр Эйленберга – Маклейна.[9]
K-теория симплициального кольца
Если р - постоянное симплициальное кольцо, то это то же самое, что K-теория кольца.
Смотрите также
Примечания
- ^ а б Табуада, Гонсало (2008). "Выше K-теория через универсальные инварианты ». Математический журнал герцога. 145 (1): 121–206. arXiv:0706.2420. Дои:10.1215/00127094-2008-049.
- ^ *Блумберг, Эндрю Дж; Гепнер, Дэвид; Табуада, Гонсало (18 апреля 2013 г.). «Универсальная характеристика высшей алгебраической K-теории». Геометрия и топология. 17 (2): 733–838. arXiv:1001.2282. Дои:10.2140 / gt.2013.17.733. ISSN 1364-0380.
- ^ Боярченко, Митя (4 ноября 2007 г.). "K-теория категории Вальдхаузена как симметричный спектр » (PDF).
- ^ а б Дандас, Бьёрн Ян; Goodwillie, Thomas G .; Маккарти, Рэнди (06.09.2012). Локальная структура алгебраической K-теории. Springer Science & Business Media. ISBN 9781447143932.
- ^ Стаффельдт, Росс (1989). «Об основных теоремах алгебраической K-теории». K-теория. 2 (4): 511–532. Дои:10.1007 / bf00533280.
- ^ Вейбель, Чарльз (2013). "Глава V: Основные теоремы высшей K-теории". K-книга: введение в алгебраическую K-теорию. Аспирантура по математике. 145. AMS.
- ^ Табуада, Гонсало (2005). "Добавочные инварианты dg-категорий". Уведомления о международных математических исследованиях. 2005 (53): 3309–3339. arXiv:математика / 0507227. Bibcode:2005математика ...... 7227T. Дои:10.1155 / IMRN.2005.3309.
- ^ «К-теория в nLab». ncatlab.org. Получено 22 августа 2017.
- ^ Schwänzl, R .; Vogt, R.M .; Вальдхаузен, Ф. (октябрь 2000 г.). "Топологические гомологии Хохшильда". Журнал Лондонского математического общества. 62 (2): 345–356. CiteSeerX 10.1.1.1020.4419. Дои:10,1112 / с0024610700008929. ISSN 1469-7750.
Рекомендации
- Дж. Лурье, Высшая алгебра, последнее обновление - август 2017 г.
- Toën, B .; Веццози, Г. (2004). "Замечание о K-теория и S-категории ». Топология. 43 (4): 765–791. arXiv:математика / 0210125. Дои:10.1016 / j.top.2003.10.008.
- Карлссон, Гуннар (2005). "Разборки в алгебраической K-теории" (PDF). В Friedlander, Eric M .; Грейсон, Дэниел Р. (ред.). Справочник по K-теории. Springer Berlin Heidelberg. С. 3–37. Дои:10.1007/978-3-540-27855-9_1. ISBN 9783540230199.
- Квиллен, Дэниел (1973), "Высшая алгебраическая K-теория. I", Алгебраическая K-теория, I: Высшие K-теории (Proc. Conf., Battelle Memorial Inst., Сиэтл, Вашингтон, 1972), Конспект лекций по математике, 341, Берлин, Нью-Йорк: Springer-Verlag, стр. 85–147, Дои:10.1007 / BFb0067053, ISBN 978-3-540-06434-3, МИСТЕР 0338129
- Вальдхаузен, Фридхельм (1985). «Алгебраическая K-теория пространств». Алгебраическая и геометрическая топология. Конспект лекций по математике. 1126: 318–419. Дои:10.1007 / BFb0074449. ISBN 978-3-540-15235-4.
- Томасон, Роберт В. (1979). "Спектральные последовательности первого квадранта в алгебраической K-теории" (PDF). Алгебраическая топология Орхус 1978 г.. Springer. С. 332–355.
- Блумберг, Эндрю Дж; Гепнер, Дэвид; Табуада, Гонсало (18 апреля 2013 г.). «Универсальная характеристика высшей алгебраической K-теории». Геометрия и топология. 17 (2): 733–838. arXiv:1001.2282. Дои:10.2140 / gt.2013.17.733. ISSN 1364-0380.
дальнейшее чтение
- Гейссер, Томас (2005). «Карта циклотомических следов и значения дзета-функций». Алгебра и теория чисел. Книжное агентство Индостана, Гургаон. С. 211–225. arXiv:математика / 0406547. Дои:10.1007/978-93-86279-23-1_14. ISBN 978-81-85931-57-9.
О недавнем подходе к ∞-категориям см.