Египетская алгебра - Egyptian algebra

в история математики, Египетская алгебра, как этот термин используется в этой статье, относится к алгебра поскольку он был разработан и использован в древний Египет. Древнеегипетская математика как обсуждалось здесь, охватывает период времени от c. 3000 г. до н.э. - ок. 300 г. до н. Э.

У нас есть только ограниченное количество ресурсов (задач) из Древнего Египта, касающихся алгебры. Проблемы алгебраического характера появляются как в Московский математический папирус (MMP) и в Математический папирус Райнда (RMP), а также несколько других источников.[1]

Фракции

Математические сочинения показывают, что писцы использовали (минимум) общие кратные превращать задачи с дробями в задачи с использованием целых чисел. Множители часто записывались красными чернилами и называются Красные вспомогательные числа.[1]

Ага проблемы, линейные уравнения и ложное положение

P6а
M35
Ага
в иероглифы

Проблемы Aha связаны с поиском неизвестных величин (называемых Aha), если указана сумма количества и части (ей). В Математический папирус Райнда также содержит четыре таких типа проблем. Проблемы 1, 19 и 25 Московского папируса - это проблемы Ага. Например, в задаче 19 требуется вычислить количество, взятое 1 и ½ раза и добавленное к 4, чтобы получить 10.[1] Другими словами, в современных математических обозначениях нас просят решить линейное уравнение:

Для решения этих проблем Aha используется метод, называемый метод ложного положения. Технику также называют метод ложного предположения. Писец подставлял в задачу первоначальное предположение ответа. Решение, использующее ложное предположение, будет пропорционально фактическому ответу, и писец найдет ответ, используя это соотношение.[1]

Проблемы Pefsu

Многие практические проблемы, содержащиеся в Московский математический папирус проблемы pefsu: 10 из 25 проблем. Pefsu измеряет силу пиво сделано из Heqat зерна

Более высокое число пефсу означает более слабый хлеб или пиво. Номер pefsu упоминается во многих списках предложений. Например, проблема 8 переводится как:

(1) Пример расчета 100 буханок хлеба пефсу 20
(2) Если кто-то говорит вам: «У вас есть 100 хлебов пефсу 20
(3) обменять на пиво пефсу 4
(4) как 1/2 1/4 солодового финикового пива
(5) Сначала рассчитайте зерно, необходимое для 100 буханок хлеба пефсу 20.
(6) Результат 5 хекат. Затем посчитайте, что вам нужно для дес-кувшина пива, например, пиво под названием 1/2 1/4 солодовое пиво.
(7) В результате получается 1/2 доли heqat, необходимой для удаления кувшина пива из верхнеегипетского зерна.
(8) Вычислите 1/2 от 5 гекатов, результат будет 2.12
(9) Возьми это 212 четыре раза
(10) Результат - 10. Затем вы говорите ему:
(11) Смотри! Количество пива оказалось правильным.[1]

Геометрические прогрессии

Использование фракций глаза Гора показывает некоторые (рудиментарные) знания о геометрическая прогрессия.[1] Одна единица была записана как 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/64. Но последний экземпляр 1/64 был записан как 5 ро, таким образом записывая 1 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + (5 ро). Эти дроби в дальнейшем использовались для записи дробей в терминах условия плюс остаток, указанный в ро как показано, например, Ахмимские деревянные скрижали.[2]

Арифметические прогрессии

Знание арифметические прогрессии также очевидно из математических источников.[1]

Рекомендации

  1. ^ а б c d е ж грамм Клагетт, Маршалл (1999). Древнеегипетская наука: сборник источников, том 3: Древнеегипетская математика. Мемуары Американского философского общества. 232. Филадельфия: Американское философское общество. ISBN  0-87169-232-5.
  2. ^ Вымазалова, Х. (2002). «Деревянные таблички из Каира: использование зернового блока HK3T в Древнем Египте». Archiv Orientální. Чарльз У., Прага: 27–42. ISSN  0044-8699.