Планарная алгебра - Planar algebra
В математика, плоские алгебры впервые появился в работе Воан Джонс на стандартный инвариант из II1 субфактор.[1] Они также обеспечивают подходящую алгебраическую основу для многих инварианты узлов (в частности Многочлен Джонса ), и использовались при описании свойств Гомологии Хованова относительно клубок сочинение.[2][3] Любая субфакторная планарная алгебра обеспечивает семейство унитарных представлений Группы Томпсона.[4]Любую конечную группу (и квантовое обобщение) можно закодировать как плоскую алгебру.[1]
Определение
Идея плоской алгебры заключается в схематической аксиоматизации стандартный инвариант.[1][5][6]
Плоский клубок
А (затемненный) плоский клубок это данные конечного числа Вход диски, один выход диск, непересекающиеся строки, дающие четное число, скажем , интервалов на диск и один -отмеченный интервал на диск.
![]()
Здесь метка отображается как -форма. На каждом входном диске он помещается между двумя соседними исходящими строками, а на выходном диске он помещается между двумя соседними входящими строками. Плоский клубок определяется с точностью до изотопия.
Сочинение
К сочинять два плоских клубка, поместите выходной диск одного во вход другого, имеющий столько же интервалов, одинаковую штриховку отмеченных интервалов и такой, чтобы -отмеченные интервалы совпадают. Наконец, удаляем совпадающие круги. Обратите внимание, что два плоских клубка могут иметь ноль, один или несколько возможных составов.
![]()
Планарная операда
В планарная операда - множество всех плоских клубков (с точностью до изоморфизма) с такими композициями.
Планарная алгебра
А планарная алгебра это представление планарной операды; точнее, это семейство векторных пространств , называется -боксы, на которых действует плоская операда, т.е.для любого клубка (с одним выходным диском и входные диски с и интервалы соответственно) имеется полилинейная карта
с по затенению -отмеченные интервалы, и эти карты (также называемые статистическими суммами) учитывают состав клубка таким образом, что все диаграммы, как показано ниже, коммутируют.
![]()
Примеры
Плоские клубки
Семейство векторных пространств порожденные плоскими клубками, имеющими интервалы на их выход диск и белый (или черный) -отмеченный интервал, допускает структуру плоской алгебры.
Темперли – Либ
Планарная алгебра Темперли-Либа порождается плоскими клубками без входного диска; это -box пространство генерируется
![]()
Более того, замкнутая строка заменяется умножением на .
![]()
Обратите внимание, что размер это Каталонский номер Эта плоская алгебра кодирует понятие Алгебра Темперли – Либа.
Алгебра Хопфа
Полупростой и непростой Алгебра Хопфа над алгебраически замкнутым полем кодируется в плоской алгебре, определяемой образующими и соотношениями, и «соответствует» (с точностью до изоморфизма) связной, неприводимой, сферической, невырожденной плоской алгебре с ненулевым модулем и глубины два.[7]
Обратите внимание, что связаны средства (что касается оцениваемый ниже), несводимый средства , сферический определено ниже, а невырожденный означает, что следы (определенные ниже) невырождены.
Подфакторная планарная алгебра
Определение
А субфакторная планарная алгебра плоский -алгебра который:
- (1) Конечномерные:
- (2) Оценка:
- (3) Сферический:
- (4) Положительный: определяет внутренний продукт.
Обратите внимание, что согласно (2) и (3) любая замкнутая строка (заштрихованная или нет) считается одной и той же константой. .
![]()
Действие путаницы имеет дело с сопряженным:
с зеркальное отображение и примыкающий к в .
Примеры и результаты
Теорема об отсутствии призраков: Планарная алгебра не имеет призрака (т.е. элемента с ) если и только если
За как указано выше, пусть быть нулевым идеалом (порожденным элементами с ). Тогда частное является субфакторной планарной алгеброй, называемой Подфакторная планарная алгебра Темперли – Либа-Джонса . Любая субфакторная планарная алгебра с константой признает как плоская подалгебра.
Плоская алгебра является субфакторной планарной алгеброй тогда и только тогда, когда это стандартный инвариант экстремального субфактор индекса , с и .[8][9][10]Конечная глубина или неприводимый субфактор экстремальна ( на ).
Существует субфакторная планарная алгебра, кодирующая любую конечную группу (и, в более общем смысле, любую конечномерную Хопф -алгебра, называемая алгеброй Каца), определяемая образующими и соотношениями. (Конечномерная) алгебра Каца «соответствует» (с точностью до изоморфизма) неприводимой субфакторной планарной алгебре глубины два.[11][12]
Подфакторная планарная алгебра, связанная с включением конечных групп,[13] не всегда запоминает включение (без ядра).[14][15]
Подфакторная плоская алгебра Биша-Джонса (иногда называемый суетливо-каталонским) определяется как но разрешив два цвета строки с их собственной константой и , с как указано выше. Это плоская подалгебра любой субфакторной планарной алгебры с таким промежуточным звеном, что и . [16][17]
Первый субфактор конечной глубины планарной алгебры индекса называется Haagerup субфакторная планарная алгебра.[18] Имеет индекс .
Подфакторные планарные алгебры полностью классифицируются по индексу не более [19]и немного дальше.[20]Эта классификация была инициирована Уффе Хаагеруп.[21]Он использует (среди прочего) список возможных основных графов вместе с теоремой вложения[22]и алгоритм медузы.[23]
Подфакторная планарная алгебра запоминает подфактор (то есть его стандартный инвариант завершен), если он поддается.[24] Подфактор конечной глубины является приемлемым.
О неаменабельном случае: существует неклассифицируемое множество неприводимых гиперконечных подфакторов индекса 6, которые все имеют один и тот же стандартный инвариант.[25]
Преобразование Фурье и бипроекции
Позволять - субфактор конечного индекса, и соответствующая подфакторная планарная алгебра. Предположить, что неприводимо (т.е. ). Позволять быть промежуточным субфактором. Пусть проекция Джонса . Обратите внимание, что . Позволять и .
![]()
Обратите внимание, что и .
Пусть биективное линейное отображение быть преобразование Фурье, также называемый -щелкните (внешней звезды) или вращение; и разреши быть сопродукт из и .
![]()
Обратите внимание, что слово сопродукт является уменьшительным от продукт свертки. Это бинарная операция.
Копроизведение удовлетворяет равенству
Для любых положительных операторов , побочный продукт тоже положительный; это можно увидеть схематически:[26]
![]()
Позволять быть противоположный (также называемый вращение). Карта соответствует четырем - щелчки внешней звезды, так что это карта идентичности, а затем .
В случае алгебры Каца контрагредиент - это в точности антипод,[12] которые для конечной группы соответствуют обратному.
А двупроекция это проекция с кратное проекции. Обратите внимание, что и бипроекции; это можно увидеть следующим образом:
![]()
Проекция является бипроекцией, если и только если это проекция Джонса промежуточного субфактора [27], если и только если .[28][26]
Переписка Галуа:[29] в случае алгебры Каца бипроекции равны 1-1 с левыми коидеальными подалгебрами, которые для конечной группы соответствуют подгруппам.
Для любой неприводимой субфакторной планарной алгебры множество бипроекторов представляет собой конечную решетку, [30] формы , как для интервала конечных групп .
Используя бипроекции, мы можем сделать промежуточные субфакторные алгебры планарными. [31][32]
В принцип неопределенности распространяется на любую неприводимую подфакторную планарную алгебру :
Позволять с проекция дальности и ненормализованный след (т.е. на ).
Принцип некоммутативной неопределенности: [33] Позволять , ненулевое. потом
Предполагая и положительный, равенство выполняется тогда и только тогда, когда это двупроекция. В более общем смысле равенство выполняется тогда и только тогда, когда это двухсменный двупроекции.
Рекомендации
- ^ а б c Воан Ф. Р. Джонс (1999), "Планарные алгебры, I", arXiv:математика / 9909027
- ^ "Дрор Бар-Натан: Публикации: Кобордизмы". Math.toronto.edu. Дои:10.2140 / gt.2005.9.1443. Получено 2016-11-20.
- ^ "Фронт: [math / 0410495] Гомологии Хованова для клубков и кобордизмов". Front.math.ucdavis.edu. Дои:10.2140 / gt.2005.9.1443. Получено 2016-11-20.
- ^ Воан Ф. Р. Джонс (2017), «Некоторые унитарные представления групп Томпсона F и T», J. Comb. Алгебра, 1 (1): 1–44, arXiv:1412.7740, Дои:10.4171 / JCA / 1-1-1, МИСТЕР 3589908
- ^ Виджай Кодиялам, ПРОТИВ. Раскол (2004), «О планарных алгебрах Джонса», J. Разветвления теории узлов, 13 (2): 219–247, Дои:10.1142 / S021821650400310X, МИСТЕР 2047470CS1 maint: использует параметр авторов (связь)
- ^ "Виджай Кодиялам - Планарные алгебры - IMSc 2015". youtube.com. 2015-11-14.
- ^ Виджай Кодиялам, ПРОТИВ. Раскол (2006), "Планарная алгебра полупростой и косвенно-простой алгебры Хопфа", Proc. Индийский акад. Sci. Математика. Sci., 116 (4): 1–16, arXiv:математика / 0506153, Bibcode:2005математика ...... 6153KCS1 maint: использует параметр авторов (связь)
- ^ Сорин Попа (1995), "Аксиоматизация решетки высших относительных коммутантов подфактора", Inventiones Mathematicae, 120 (3): 427–445, Bibcode:1995ИнМат.120..427П, Дои:10.1007 / BF01241137, МИСТЕР 1334479
- ^ Алиса Гионнет, Воан Ф. Р. Джонс, Дмитрий Шляхтенко (2010), «Случайные матрицы, свободная вероятность, плоские алгебры и субфакторы», Clay Math. Proc., {11}: 201–239, МИСТЕР 2732052CS1 maint: использует параметр авторов (связь)
- ^ Виджай Кодиялам, ПРОТИВ. Раскол (2009), «От субфакторных планарных алгебр к субфакторам», Междунар. J. Math., 20 (10): 1207–1231, arXiv:0807.3704, Дои:10.1142 / S0129167X0900573X, МИСТЕР 2574313CS1 maint: использует параметр авторов (связь)
- ^ Парамита Дас, Виджай Кодиялам (2005), «Планарные алгебры и теорема Окнеану-Шимански», Proc. Амер. Математика. Soc., 133 (9): 2751–2759, Дои:10.1090 / S0002-9939-05-07789-0, ISSN 0002-9939, МИСТЕР 2146224CS1 maint: использует параметр авторов (связь)
- ^ а б Виджай Кодиялам, Зеф Ландау, ПРОТИВ. Раскол (2003), "Плоская алгебра, ассоциированная с алгеброй Каца", Proc. Индийский акад. Sci. Математика. Sci., 113 (1): 15–51, Дои:10.1007 / BF02829677, ISSN 0253-4142, МИСТЕР 1971553CS1 maint: использует параметр авторов (связь)
- ^ Вед Пракаш Гупта (2008), «Планарная алгебра подгруппы-подфактора», Труды математических наук, 118 (4): 583–612, arXiv:0806.1791, Bibcode:2008arXiv0806.1791G, Дои:10.1007 / s12044-008-0046-0
- ^ Виджай Кодиялам, ПРОТИВ. Раскол (2000), «Подгруппа-подфактор», Математика. Сканд., 86 (1): 45–74, Дои:10.7146 / math.scand.a-14281, ISSN 0025-5521, МИСТЕР 1738515CS1 maint: использует параметр авторов (связь)
- ^ Масаки Идзуми (2002), "Характеризация изоморфных групп-подгрупп подфакторов", Int. Математика. Res. Нет., 2002 (34): 1791–1803, Дои:10.1155 / S107379280220402X, ISSN 1073-7928, МИСТЕР 1920326
- ^ Дитмар Биш, Воан Джонс (1997), "Алгебры, ассоциированные с промежуточными субфакторами", Inventiones Mathematicae, 128 (1): 89–157, Bibcode:1997InMat.128 ... 89J, Дои:10.1007 / s002220050137CS1 maint: использует параметр авторов (связь)
- ^ Пинхас Гроссман, Воан Джонс (2007), «Промежуточные субфакторы без дополнительной структуры», J. Amer. Математика. Soc., 20 (1): 219–265, Bibcode:2007JAMS ... 20..219G, Дои:10.1090 / S0894-0347-06-00531-5, МИСТЕР 2257402CS1 maint: использует параметр авторов (связь)
- ^ Эмили Петерс (2010), "Конструкция плоской алгебры субфактора Хаагерупа", Междунар. J. Math., 21 (8): 987–1045, arXiv:0902.1294, Дои:10.1142 / S0129167X10006380, МИСТЕР 2679382
- ^ Воан Ф. Р. Джонс, Скотт Моррисон, Ноа Снайдер (2014), «Классификация субфакторов индекса не более ", Бык. Амер. Математика. Soc. (Н.С.), 51 (2): 277–327, arXiv:1304.6141, Дои:10.1090 / S0273-0979-2013-01442-3, МИСТЕР 3166042CS1 maint: использует параметр авторов (связь)
- ^ Нарджесс Афзали, Скотт Моррисон, Дэвид Пенни (2015), Классификация субфакторов с индексом не выше , стр. 70pp, arXiv:1509.00038, Bibcode:2015arXiv150900038ACS1 maint: использует параметр авторов (связь)
- ^ Уффе Хаагеруп (1994), "Основные графики субфакторов в диапазоне индекса ", Субфакторы (Кьюзесо, 1993): 1–38, МИСТЕР 1317352
- ^ Воан Джонс, Дэвид Пенни (2011), "Теорема вложения для субфакторных плоских алгебр конечной глубины", Квантовый тополь., 2 (3): 301–337, arXiv:1007.3173, Дои:10.4171 / QT / 23, МИСТЕР 2812459CS1 maint: использует параметр авторов (связь)
- ^ Стивен Бигелоу, Дэвид Пенни (2014), «Стабильность главного графа и алгоритм медузы». Математика. Анна., 358 (1–2): 1–24, arXiv:1208.1564, Дои:10.1007 / s00208-013-0941-2, МИСТЕР 3157990CS1 maint: использует параметр авторов (связь)
- ^ Попа, Сорин (1994), «Классификация аменабильных субфакторов типа II», Acta Mathematica, 172 (2): 163–255, Дои:10.1007 / BF02392646, МИСТЕР 1278111
- ^ Арно Бротье, Стефан Ваес (2015), «Семейства гиперконечных субфакторов с одинаковым стандартным инвариантом и заданной фундаментальной группой», J. Noncommut. Геом., 9 (3): 775–796, arXiv:1309.5354, Дои:10.4171 / JNCG / 207, МИСТЕР 3420531CS1 maint: использует параметр авторов (связь)
- ^ а б Чжэнвэй Лю (2016), "Планарные алгебры малого ранга с обменными отношениями", Пер. Амер. Математика. Soc., 368 (12): 8303–8348, arXiv:1308.5656, Дои:10.1090 / tran / 6582, ISSN 0002-9947, МИСТЕР 3551573
- ^ Дитмар Биш (1994), "Заметка о промежуточных субфакторах", Pacific J. Math., 163 (2): 201–216, Дои:10.2140 / pjm.1994.163.201, ISSN 0030-8730, МИСТЕР 1262294
- ^ Зеф А. Ландау (2002), "Планарные алгебры обменных отношений", Геом. Dedicata, 95: 183–214, Дои:10.1023 / А: 1021296230310, ISSN 0046-5755, МИСТЕР 1950890
- ^ Масаки Идзуми, Роберто Лонго, Сорин Попа (1998), "Соответствие Галуа для компактных групп автоморфизмов алгебр фон Неймана с обобщением на алгебры Каца", J. Funct. Анальный., 155 (1): 25–63, Дои:10.1006 / jfan.1997.3228, ISSN 0022-1236, МИСТЕР 1622812CS1 maint: использует параметр авторов (связь)
- ^ Ясуо Вататани (1996), "Решетки промежуточных субфакторов", J. Funct. Анальный., 140 (2): 312–334, Дои:10.1006 / jfan.1996.0110, HDL:2115/68899, ISSN 0022-1236, МИСТЕР 1409040
- ^ Зеф А. Ландау (1998), "Промежуточные субфакторы", Диссертация - Калифорнийский университет в Беркли: 132 пикселей
- ^ Кешаб Чандра Бакши (2016), Повторный визит к промежуточной плоской алгебре, стр. 31pp, arXiv:1611.05811, Bibcode:2016arXiv161105811B
- ^ Чунлан Цзян, Чжэнвэй Лю, Цзиньсон Ву (2016), «Принципы некоммутативной неопределенности», J. Funct. Анальный., 270 (1): 264–311, arXiv:1408.1165, Дои:10.1016 / j.jfa.2015.08.007CS1 maint: использует параметр авторов (связь)