Часть серии по Статистика |
Корреляция и ковариация |
---|
 |
Корреляция и ковариация случайных векторов |
Корреляция и ковариация случайных процессов |
Корреляция и ковариация детерминированных сигналов - Автоковариационная функция
- Кросс-ковариационная функция
|
|
В теория вероятности и статистика, учитывая случайный процесс, то автоковариация это функция, которая дает ковариация процесса с самим собой в пары временных точек. Автоковариация тесно связана с автокорреляция рассматриваемого процесса.
Автоковариантность случайных процессов
Определение
С обычными обозначениями
для ожидание оператор, если случайный процесс
имеет иметь в виду функция
, то автоковариация определяется выражением[1]:п. 162
![{ displaystyle operatorname {K} _ {XX} (t_ {1}, t_ {2}) = operatorname {cov} left [X_ {t_ {1}}, X_ {t_ {2}} right] = operatorname {E} [(X_ {t_ {1}} - mu _ {t_ {1}}) (X_ {t_ {2}} - mu _ {t_ {2}})] = operatorname { E} [X_ {t_ {1}} X_ {t_ {2}}] - mu _ {t_ {1}} mu _ {t_ {2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92c3c2da09a072e13e513b1bbe6933e25cde5645) | | (Уравнение 2) |
куда
и
два момента во времени.
Определение слабо стационарного процесса
Если
это слабо стационарный (WSS) процесс, то верно следующее:[1]:п. 163
для всех 
и
для всех 
и

куда
- время задержки или время, на которое сигнал был сдвинут.
Таким образом, функция автоковариации процесса WSS определяется следующим образом:[2]:п. 517
![{ displaystyle operatorname {K} _ {XX} ( tau) = operatorname {E} [(X_ {t} - mu _ {t}) (X_ {t- tau} - mu _ {t - tau})] = operatorname {E} [X_ {t} X_ {t- tau}] - mu _ {t} mu _ {t- tau}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bebac457858097c963a0420549814469b9957a91) | | (Уравнение 3) |
что эквивалентно
.
Нормализация
Это обычная практика в некоторых дисциплинах (например, статистика и анализ временных рядов ), чтобы нормализовать функцию автоковариации, чтобы получить зависящую от времени Коэффициент корреляции Пирсона. Однако в других дисциплинах (например, инженерии) от нормализации обычно отказываются, и термины «автокорреляция» и «автоковариация» используются как взаимозаменяемые.
Определение нормализованной автокорреляции случайного процесса:
.
Если функция
четко определено, его значение должно лежать в диапазоне
, где 1 указывает на идеальную корреляцию, а -1 указывает на идеальную антикорреляция.
Для процесса WSS это определение
.
куда
.
Характеристики
Свойство симметрии
[3]:стр.169
соответственно для процесса WSS:
[3]:стр.173
Линейная фильтрация
Автоковариантность линейно фильтрованного процесса 

является

Расчет турбулентной диффузии
Автоковариацию можно использовать для расчета бурный диффузность.[4] Турбулентность потока может вызвать колебания скорости в пространстве и времени. Таким образом, мы можем идентифицировать турбулентность по статистике этих колебаний.[нужна цитата ].
Разложение Рейнольдса используется для определения пульсаций скорости
(предположим, что сейчас мы работаем с одномерной задачей и
скорость по
направление):

куда
- истинная скорость, а
это ожидаемое значение скорости. Если мы выберем правильный
, все стохастические компоненты турбулентной скорости будут включены в
. Чтобы определить
, требуется набор измерений скорости, собранных из точек в пространстве, моментов времени или повторных экспериментов.
Если принять турбулентный поток
(
, и c - член концентрации) может быть вызвано случайным блужданием, мы можем использовать Законы диффузии Фика чтобы выразить член турбулентного потока:

Автоковариация скорости определяется как
или же 
куда
время задержки, и
это расстояние запаздывания.
Турбулентная диффузия
можно рассчитать с помощью следующих 3 методов:
- Если у нас есть данные о скорости вдоль Лагранжева траектория:

- Если у нас есть данные о скорости на одном фиксированном (Эйлеров ) место расположения[нужна цитата ]:
![{ displaystyle D_ {T_ {x}} приблизительно [0,3 pm 0,1] left [{ frac { langle u'u ' rangle + langle u rangle ^ {2}} { langle u'u ' rangle}} right] int _ { tau} ^ { infty} u' (t_ {0}) u '(t_ {0} + tau) , d tau.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec64e8eaa03768b3b941ad1e1a0ad878dd8384f7)
- Если у нас есть информация о скорости в двух фиксированных (эйлеровых) точках[нужна цитата ]:
![{ displaystyle D_ {T_ {x}} приблизительно [0,4 pm 0,1] left [{ frac {1} { langle u'u ' rangle}} right] int _ {r} ^ { infty} u '(x_ {0}) u' (x_ {0} + r) , dr,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c27ff93a23a26b35510de18e610047c20baf639c)
куда
- это расстояние, разделенное этими двумя фиксированными точками.
Автоковариация случайных векторов
Смотрите также
Рекомендации