Сорт Альбанезе - Albanese variety

В математика, то Сорт Альбанезе , названный в честь Джакомо Альбанезе, является обобщением Якобиева многообразие кривой.

Точное заявление

Сорт Альбанезе - это абелевый сорт. генерируется разнообразием взяв заданную точку к личности . Другими словами, есть морфизм из разновидности своему сорту Альбанезе , такой, что любой морфизм из в абелево многообразие (переводящее данную точку в тождество) разлагается однозначно через . Для комплексных многообразий Андре Бланшар (1956 ) аналогично определил многообразие Альбанезе как морфизм из к тору такой, что любой морфизм тора однозначно факторизуется через это отображение. (В данном случае это аналитическое многообразие; оно не обязательно должно быть алгебраическим.)

Характеристики

За компактный Кэлеровы многообразия размер сорта Альбанезе - Номер Ходжа , размерность пространства дифференциалы первого рода на , который для поверхностей называется неровность поверхности. С точки зрения дифференциальные формы, любая голоморфная 1-форма на это откат трансляционно-инвариантной 1-формы на многообразии Альбанезе, происходящей из голоморфной котангенс пространство из в его индивидуальном элементе. Как и в случае кривой, по выбору базовая точка на (из которого «интегрировать»), Морфизм Альбанезе

определяется, по которому 1-формы отступают. Этот морфизм уникален вплоть до перевода на разновидность Альбанезе. Для многообразий над полями положительной характеристики размерность многообразия Альбанезе может быть меньше чисел Ходжа и (которые не обязательно должны быть равными). Чтобы увидеть первое, обратите внимание, что сорт Альбанезе двойственен Разновидность пикара, касательное пространство которого в единице задается формулой Который является результатом Дзюн-ичи Игуса в библиографии.

Теорема Ройтмана

Если наземное поле k является алгебраически замкнутый, карта Альбанезе можно показать факторизовать гомоморфизм группы (также называемый Карта Альбанезе)

от Группа чау 0-мерных циклов на V к группе рациональные точки из , которая является абелевой группой, поскольку является абелевой разновидностью.

Теорема Ройтмана, введенный А.А. Ройтман (1980 ), утверждает, что при л премьер к char (k) отображение Альбанезе индуцирует изоморфизм на л-кручение подгруппы.[1][2] Замена группы Чжоу алгебраическими сингулярными гомологиями Суслина – Воеводского после введения Мотивная когомология Теорема Ройтмана была получена и переформулирована в мотивационных рамках. Например, аналогичный результат верен для неособых квазипроективных многообразий.[3] Дальнейшие версии Теорема Ройтмана доступны для обычных схем.[4] Собственно, самые общие формулировки Теорема Ройтмана (т.е. гомологические, когомологические и Борел – Мур ) вовлекают мотивный комплекс Альбанезе и были доказаны Лукой Барбьери-Виале и Бруно Каном (см. ссылки III.13).

Связь с разновидностью Пикар

Сорт Альбанезе - это двойной к Разновидность пикарасвязный компонент нуля Схема Пикара классификация обратимые связки на V):

Для алгебраических кривых Теорема Абеля – Якоби следует, что многообразия Альбанезе и Пикара изоморфны.

Смотрите также

Примечания и ссылки

  1. ^ Ройтман, А.А. (1980). «Кручение группы 0-циклов по модулю рациональной эквивалентности». Анналы математики. Вторая серия. 111 (3): 553–569. Дои:10.2307/1971109. ISSN  0003-486X. JSTOR  1971109. МИСТЕР  0577137.
  2. ^ Блох, Спенсер (1979). "Алгебраические циклы кручения и теорема Ройтмана". Compositio Mathematica. 39 (1). МИСТЕР  0539002.
  3. ^ Spieß, Майкл; Самуэли, Тамаш (2003). «Об отображении Альбанезе для гладких квазипроективных многообразий». Mathematische Annalen. 325: 1–17. arXiv:математика / 0009017. Дои:10.1007 / s00208-002-0359-8.
  4. ^ Гейссер, Томас (2015). «Теорема Ройтмана для нормальных схем». Письма о математических исследованиях. 22 (4): 1129–1144. arXiv:1402.1831. Дои:10.4310 / MRL.2015.v22.n4.a8.