Список интегралов от иррациональных функций - List of integrals of irrational functions
Статья со списком Википедии
Ниже приводится список интегралы (первообразный функции) иррациональные функции. Полный список интегральных функций см. списки интегралов. В этой статье постоянная интеграции опущено для краткости.
Интегралы с участием р = √а2 + Икс2
![{ displaystyle int r , dx = { frac {1} {2}} left (xr + a ^ {2} , ln left (x + r right) right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/757ff9ec03548bc267baa1e9b62ae09ba29959cb)
![{ displaystyle int r ^ {3} , dx = { frac {1} {4}} xr ^ {3} + { frac {3} {8}} a ^ {2} xr + { frac { 3} {8}} a ^ {4} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7aa63739c00a1763e88c3e3e11a95623d1dc2d7f)
![{ displaystyle int r ^ {5} , dx = { frac {1} {6}} xr ^ {5} + { frac {5} {24}} a ^ {2} xr ^ {3} + { frac {5} {16}} a ^ {4} xr + { frac {5} {16}} a ^ {6} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3616d6c3889707e4405b23e6b38031e57d91ed8)
![{ displaystyle int xr , dx = { frac {r ^ {3}} {3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebb71452dba540cbbb7e94426b63fb5268c47c7f)
![{ displaystyle int xr ^ {3} , dx = { frac {r ^ {5}} {5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77019dd2afd82923a973aa2f7680a97e3df0aea8)
![{ displaystyle int xr ^ {2n + 1} , dx = { frac {r ^ {2n + 3}} {2n + 3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa545554b384f332521236696efc27f8b50d977)
![{ displaystyle int x ^ {2} r , dx = { frac {x ^ {3} r} {4}} + { frac {a ^ {2} xr} {8}} - { frac {a ^ {4}} {8}} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99691976cbe08f4e9ae50e670c428cdea3fde506)
![{ displaystyle int x ^ {2} r ^ {3} , dx = { frac {xr ^ {5}} {6}} - { frac {a ^ {2} xr ^ {3}} { 24}} - { frac {a ^ {4} xr} {16}} - { frac {a ^ {6}} {16}} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bd383ab4eb3dee757db6fac447aa5522605bef0)
![{ displaystyle int x ^ {3} r , dx = { frac {r ^ {5}} {5}} - { frac {a ^ {2} r ^ {3}} {3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8886c9df29f7cb8a9fbe5dc694b74b3f1590dafb)
![{ displaystyle int x ^ {3} r ^ {3} , dx = { frac {r ^ {7}} {7}} - { frac {a ^ {2} r ^ {5}} { 5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5cceb1a3f698a38b012069e9e8d6be32ef520f1)
![{ displaystyle int x ^ {3} r ^ {2n + 1} , dx = { frac {r ^ {2n + 5}} {2n + 5}} - { frac {a ^ {2} r ^ {2n + 3}} {2n + 3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c37578aa1309d6ae1b072a50eb9dea0251a0598a)
![{ displaystyle int x ^ {4} r , dx = { frac {x ^ {3} r ^ {3}} {6}} - { frac {a ^ {2} xr ^ {3}} {8}} + { frac {a ^ {4} xr} {16}} + { frac {a ^ {6}} {16}} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf79a23b07e2b620e77a921344127408551c0fbe)
![{ displaystyle int x ^ {4} r ^ {3} , dx = { frac {x ^ {3} r ^ {5}} {8}} - { frac {a ^ {2} xr ^ {5}} {16}} + { frac {a ^ {4} xr ^ {3}} {64}} + { frac {3a ^ {6} xr} {128}} + { frac {3a ^ {8}} {128}} ln left (x + r right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffc497032d7cb34e5ab01a227b5747cbf4910a76)
![{ displaystyle int x ^ {5} r , dx = { frac {r ^ {7}} {7}} - { frac {2a ^ {2} r ^ {5}} {5}} + { гидроразрыва {а ^ {4} г ^ {3}} {3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d154741fca5708cbd7d062fed335a69b8a5c7c5e)
![{ displaystyle int x ^ {5} r ^ {3} , dx = { frac {r ^ {9}} {9}} - { frac {2a ^ {2} r ^ {7}} { 7}} + { frac {a ^ {4} r ^ {5}} {5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cb148de4e334085cdbe18ce4f45659925082f8)
![{ displaystyle int x ^ {5} r ^ {2n + 1} , dx = { frac {r ^ {2n + 7}} {2n + 7}} - { frac {2a ^ {2} r ^ {2n + 5}} {2n + 5}} + { frac {a ^ {4} r ^ {2n + 3}} {2n + 3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5a5ddb75d41b54c1ab174333d7c6aea321f94d8)
![{ displaystyle int { frac {r , dx} {x}} = ra ln left | { frac {a + r} {x}} right | = ra , operatorname {arsinh} { frac {a} {x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a511b55b2624c38325653d4f6e9b292fae2da49)
![{ displaystyle int { frac {r ^ {3} , dx} {x}} = { frac {r ^ {3}} {3}} + a ^ {2} ra ^ {3} ln left | { frac {a + r} {x}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4508f8d7ecb7336d153425ded40ace67988347c9)
![{ displaystyle int { frac {r ^ {5} , dx} {x}} = { frac {r ^ {5}} {5}} + { frac {a ^ {2} r ^ { 3}} {3}} + a ^ {4} ra ^ {5} ln left | { frac {a + r} {x}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/05ca1d896950595916eb13991c5da85427145217)
![{ displaystyle int { frac {r ^ {7} , dx} {x}} = { frac {r ^ {7}} {7}} + { frac {a ^ {2} r ^ { 5}} {5}} + { frac {a ^ {4} r ^ {3}} {3}} + a ^ {6} ra ^ {7} ln left | { frac {a + r } {x}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f07e4f96d167d6d54ebf56a9209833bc4bb5a3)
![int { frac {dx} {r}} = operatorname {arsinh} { frac {x} {a}} = ln left ({ frac {x + r} {a}} right)](https://wikimedia.org/api/rest_v1/media/math/render/svg/54a78aad92f1fd09df4f4c33d5b28081aec09c45)
![int { frac {dx} {r ^ {3}}} = { frac {x} {a ^ {2} r}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e903aacbfd829184b3eeb9233ce14ac236d1e6b)
![int { frac {x , dx} {r}} = r](https://wikimedia.org/api/rest_v1/media/math/render/svg/77a3156a33834a19e192af67f3a54da6ddbe4ce1)
![int { frac {x , dx} {r ^ {3}}} = - { frac {1} {r}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8efc8a15f3072555233b2781dc4c398780f904e6)
![{ displaystyle int { frac {x ^ {2} , dx} {r}} = { frac {x} {2}} r - { frac {a ^ {2}} {2}} , operatorname {arsinh} { frac {x} {a}} = { frac {x} {2}} r - { frac {a ^ {2}} {2}} ln left ({ гидроразрыв {x + r} {a}} right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f811e33067f8d779d7ae5dfa3a842e7e69a1b366)
![int { frac {dx} {xr}} = - { frac {1} {a}} , operatorname {arsinh} { frac {a} {x}} = - { frac {1} { a}} ln left | { frac {a + r} {x}} right |](https://wikimedia.org/api/rest_v1/media/math/render/svg/7217f767426c8ffb2d25674cf08d8d9c1a30035e)
Интегралы с участием s = √Икс2 − а2
Предполагать Икс2 > а2 (за Икс2 < а2, см. следующий раздел):
![{ displaystyle int s , dx = { frac {1} {2}} left (xs-a ^ {2} ln left | x + s right | right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/35886442d8a417195c070de09e947bd11046f6a7)
![{ displaystyle int xs , dx = { frac {1} {3}} s ^ {3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79ec50724959547d7a180296ed822323ac0dea9a)
![{ displaystyle int { frac {s , dx} {x}} = s- | a | arccos left | { frac {a} {x}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61795cdfbe6ed4953270eacbc923f4c60bda6db5)
![int { frac {dx} {s}} = ln left | { frac {x + s} {a}} right |](https://wikimedia.org/api/rest_v1/media/math/render/svg/4fed05f1468654080f2fffafe9dea36c935ec339)
Здесь
, где положительное значение
должен быть взят.
![{ displaystyle int { frac {x , dx} {s}} = s}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7498e24f5b810335c07522c0a9739358efc171ce)
![{ displaystyle int { frac {x , dx} {s ^ {3}}} = - { frac {1} {s}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/420ee527cc619eaea1f897b2d8d9765e2ac3a34a)
![{ displaystyle int { frac {x , dx} {s ^ {5}}} = - { frac {1} {3s ^ {3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da2899f813091ab868b134dbb398651fd67cdd4a)
![{ displaystyle int { frac {x , dx} {s ^ {7}}} = - { frac {1} {5s ^ {5}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/534b1e0f5248dfd33193173d280a6ab0afa73d30)
![{ displaystyle int { frac {x , dx} {s ^ {2n + 1}}} = - { frac {1} {(2n-1) s ^ {2n-1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df23be08dda0b35eeec793c80b44ef5db030dc30)
![{ displaystyle int { frac {x ^ {2m} , dx} {s ^ {2n + 1}}} = - { frac {1} {2n-1}} { frac {x ^ {2m -1}} {s ^ {2n-1}}} + { frac {2m-1} {2n-1}} int { frac {x ^ {2m-2} , dx} {s ^ { 2н-1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e146edfd566e4448d1d12d5bd6abeff171019619)
![{ displaystyle int { frac {x ^ {2} , dx} {s}} = { frac {xs} {2}} + { frac {a ^ {2}} {2}} ln left | { frac {x + s} {a}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e3984e353316fd0845d7e2a525a3c20cdf3b3fef)
![{ displaystyle int { frac {x ^ {2} , dx} {s ^ {3}}} = - { frac {x} {s}} + ln left | { frac {x + s} {a}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19429e0acc1777fdde820e9fbf863900c3c3eb17)
![{ displaystyle int { frac {x ^ {4} , dx} {s}} = { frac {x ^ {3} s} {4}} + { frac {3} {8}} а ^ {2} xs + { frac {3} {8}} a ^ {4} ln left | { frac {x + s} {a}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5139c41de6581d88b5271f6f4813caafaf4dd1a)
![{ displaystyle int { frac {x ^ {4} , dx} {s ^ {3}}} = { frac {xs} {2}} - { frac {a ^ {2} x} { s}} + { frac {3} {2}} a ^ {2} ln left | { frac {x + s} {a}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f54a7b455636a1059cf15874b29fb564e528b5de)
![{ displaystyle int { frac {x ^ {4} , dx} {s ^ {5}}} = - { frac {x} {s}} - { frac {1} {3}} { frac {x ^ {3}} {s ^ {3}}} + ln left | { frac {x + s} {a}} right |}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc599315c9d3c1c1d2a0cf582c1e89c3efc93b3)
![{ displaystyle int { frac {x ^ {2m} , dx} {s ^ {2n + 1}}} = (- 1) ^ {nm} { frac {1} {a ^ {2 (нм )}}} sum _ {i = 0} ^ {nm-1} { frac {1} {2 (m + i) +1}} {nm-1 choose i} { frac {x ^ { 2 (m + i) +1}} {s ^ {2 (m + i) +1}}} qquad { mbox {(}} n> m geq 0 { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1b4e7668e09862fe1b92881767247b577cf2d85)
![{ displaystyle int { frac {dx} {s ^ {3}}} = - { frac {1} {a ^ {2}}} { frac {x} {s}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/676ac2308ed60218f4e246884e5783df8e2ebc54)
![{ displaystyle int { frac {dx} {s ^ {5}}} = { frac {1} {a ^ {4}}} left [{ frac {x} {s}} - { гидроразрыв {1} {3}} { frac {x ^ {3}} {s ^ {3}}} right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/054a5959ce5e03cf279c1b29dff2ba014ac6dcde)
![int { frac {dx} {s ^ {7}}} = - { frac {1} {a ^ {6}}} left [{ frac {x} {s}} - { frac { 2} {3}} { frac {x ^ {3}} {s ^ {3}}} + { frac {1} {5}} { frac {x ^ {5}} {s ^ {5 }}}верно]](https://wikimedia.org/api/rest_v1/media/math/render/svg/86843311de7fc72bc01f87742445f7c4b88899e9)
![int { frac {dx} {s ^ {9}}} = { frac {1} {a ^ {8}}} left [{ frac {x} {s}} - { frac {3 } {3}} { frac {x ^ {3}} {s ^ {3}}} + { frac {3} {5}} { frac {x ^ {5}} {s ^ {5} }} - { frac {1} {7}} { frac {x ^ {7}} {s ^ {7}}} right]](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca32b3a8d7f9040840f5d1de3467129edff0d80b)
![{ displaystyle int { frac {x ^ {2} , dx} {s ^ {5}}} = - { frac {1} {a ^ {2}}} { frac {x ^ {3 }} {3s ^ {3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7678ddbcc74493dcef267531c411de750e6ecfc)
![{ displaystyle int { frac {x ^ {2} , dx} {s ^ {7}}} = { frac {1} {a ^ {4}}} left [{ frac {1} {3}} { frac {x ^ {3}} {s ^ {3}}} - { frac {1} {5}} { frac {x ^ {5}} {s ^ {5}} }верно]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6a98057cf3f3d6b7025114445c972bb6b7b7af9d)
![{ displaystyle int { frac {x ^ {2} , dx} {s ^ {9}}} = - { frac {1} {a ^ {6}}} left [{ frac {1 } {3}} { frac {x ^ {3}} {s ^ {3}}} - { frac {2} {5}} { frac {x ^ {5}} {s ^ {5} }} + { frac {1} {7}} { frac {x ^ {7}} {s ^ {7}}} right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cce4b87e7a47ce42042803038139f830afd5d37)
Интегралы с участием ты = √а2 − Икс2
![{ displaystyle int u , dx = { frac {1} {2}} left (xu + a ^ {2} arcsin { frac {x} {a}} right) qquad { mbox {(}} | x | leq | a | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf908b7dc2ed6a0e0e1763ecd5418b2f374b1b8)
![{ displaystyle int xu , dx = - { frac {1} {3}} u ^ {3} qquad { mbox {(}} | x | leq | a | { mbox {)}} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/59db13d03287959afa947e1496b77be923eb8803)
![{ displaystyle int x ^ {2} u , dx = - { frac {x} {4}} u ^ {3} + { frac {a ^ {2}} {8}} (xu + a ^ {2} arcsin { frac {x} {a}}) qquad { mbox {(}} | x | leq | a | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5768e21637b0760808486ab008ce28e37ddcb1a)
![{ displaystyle int { frac {u , dx} {x}} = ua ln left | { frac {a + u} {x}} right | qquad { mbox {(}} | х | leq | а | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08989a6d3cda85094876242fabe63eeecc9704b4)
![int { frac {dx} {u}} = arcsin { frac {x} {a}} qquad { mbox {(}} | x | leq | a | { mbox {)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dacefb8fb4df4a4cd90b7e24706b39ce53a66023)
![{ displaystyle int { frac {x ^ {2} , dx} {u}} = { frac {1} {2}} left (-xu + a ^ {2} arcsin { frac { x} {a}} right) qquad { mbox {(}} | x | leq | a | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8563dd9195878ff02d72ac82861a9c48e286)
![{ displaystyle int u , dx = { frac {1} {2}} left (xu- operatorname {sgn} x , operatorname {arcosh} left | { frac {x} {a} } right | right) qquad { mbox {(для}} | x | geq | a | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2845ce5de5f507e697fd6b0843d2000ada598b24)
![{ displaystyle int { frac {x} {u}} , dx = -u qquad { mbox {(}} | x | leq | a | { mbox {)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/641d5d85a29525355dfcf37fe4546054300cc04d)
Интегралы с участием р = √топор2 + bx + c
Предполагать (топор2 + bx + c) не сводится к следующему выражению (px + q)2 для некоторых п и q.
![int { frac {dx} {R}} = { frac {1} { sqrt {a}}} ln left | 2 { sqrt {a}} R + 2ax + b right | qquad { mbox {(для}} а> 0 { mbox {)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3add2ea6d0465dc1f8f3de7193104f8bad5b7a4b)
![int { frac {dx} {R}} = { frac {1} { sqrt {a}}} , operatorname {arsinh} { frac {2ax + b} { sqrt {4ac-b ^ {2}}}} qquad { mbox {(для}} a> 0 { mbox {,}} 4ac-b ^ {2}> 0 { mbox {)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/837e1ab91fe899e88b6f3c4b13666e8697eb3013)
![int { frac {dx} {R}} = { frac {1} { sqrt {a}}} ln | 2ax + b | quad { mbox {(для}} a> 0 { mbox {,}} 4ac-b ^ {2} = 0 { mbox {)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/556efdcbf8ee92bfb28e48482149c769d9125052)
![int { frac {dx} {R}} = - { frac {1} { sqrt {-a}}} arcsin { frac {2ax + b} { sqrt {b ^ {2} -4ac }}} qquad { mbox {(для}} a <0 { mbox {,}} 4ac-b ^ {2} <0 { mbox {,}} left | 2ax + b right | <{ sqrt {b ^ {2} -4ac}} { mbox {)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4017a60a8edb505fe2149a772d5e231c1f1ed9)
![int { frac {dx} {R ^ {3}}} = { frac {4ax + 2b} {(4ac-b ^ {2}) R}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/086934b294e8b53bebe7b53241bad912f4212dee)
![int { frac {dx} {R ^ {5}}} = { frac {4ax + 2b} {3 (4ac-b ^ {2}) R}} left ({ frac {1} {R ^ {2}}} + { frac {8a} {4ac-b ^ {2}}} right)](https://wikimedia.org/api/rest_v1/media/math/render/svg/6887eff55e44af7ed031fa1d919d3de3f379a90b)
![int { frac {dx} {R ^ {2n + 1}}} = { frac {2} {(2n-1) (4ac-b ^ {2})}} left ({ frac {2ax + b} {R ^ {2n-1}}} + 4a (n-1) int { frac {dx} {R ^ {2n-1}}} right)](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6fd19c82abfd6ab01d93cc3f2691059d4b4915c)
![{ displaystyle int { frac {x} {R}} , dx = { frac {R} {a}} - { frac {b} {2a}} int { frac {dx} {R }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e6978eb76d4e7435f227a36d75284fd5ac366a76)
![{ displaystyle int { frac {x} {R ^ {3}}} , dx = - { frac {2bx + 4c} {(4ac-b ^ {2}) R}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f9364096dd1c0621646aefef2705945240a52650)
![{ displaystyle int { frac {x} {R ^ {2n + 1}}} , dx = - { frac {1} {(2n-1) aR ^ {2n-1}}} - { гидроразрыв {b} {2a}} int { frac {dx} {R ^ {2n + 1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1160bb82c90871b7587728777ee03f9c59953757)
![{ displaystyle int { frac {dx} {xR}} = - { frac {1} { sqrt {c}}} ln left | { frac {2 { sqrt {c}} R + bx + 2c} {x}} right |, ~ c> 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e62f8d2d2edda5f638ea40d69da7d9b4ee20dbfe)
![{ displaystyle int { frac {dx} {xR}} = - { frac {1} { sqrt {c}}} operatorname {arsinh} left ({ frac {bx + 2c} {| x | { sqrt {4ac-b ^ {2}}}}} right), ~ c <0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/94e44a3b8a2baaecefe1426abe9f66b483bae82d)
![{ displaystyle int { frac {dx} {xR}} = { frac {1} { sqrt {-c}}} operatorname {arcsin} left ({ frac {bx + 2c} {| x | { sqrt {b ^ {2} -4ac}}} right), ~ c <0, b ^ {2} -4ac> 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2140db710a6f09b4bc6cd2f81d79b7c44d325790)
![{ displaystyle int { frac {dx} {xR}} = - { frac {2} {bx}} left ({ sqrt {ax ^ {2} + bx}} right), ~ c = 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0121ed272243c4b2169efdf39fcbf0ea6fcf1ed)
![{ displaystyle int { frac {x ^ {2}} {R}} , dx = { frac {2ax-3b} {4a ^ {2}}} R + { frac {3b ^ {2} - 4ac} {8a ^ {2}}} int { frac {dx} {R}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6fed9e5a7ab71563eb0fbaadcb9d0c92c0078eaf)
![{ displaystyle int { frac {dx} {x ^ {2} R}} = - { frac {R} {cx}} - { frac {b} {2c}} int { frac {dx } {xR}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ed093e910b3e384b46e617eb19d4895834e2f3)
![{ displaystyle int R , dx = { frac {2ax + b} {4a}} R + { frac {4ac-b ^ {2}} {8a}} int { frac {dx} {R} }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ca86e8e08abf7030acd7d02e1fd1cf114242120)
![int xR , dx = { frac {R ^ {3}} {3a}} - { frac {b (2ax + b)} {8a ^ {2}}} R - { frac {b (4ac -b ^ {2})} {16a ^ {2}}} int { frac {dx} {R}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cddad583bf46e028aa94c79b5ea041fb37319ad)
![{ displaystyle int x ^ {2} R , dx = { frac {6ax-5b} {24a ^ {2}}} R ^ {3} + { frac {5b ^ {2} -4ac} { 16a ^ {2}}} int R , dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98a7ef1d38a79135f43c0bec8b994d9a9f6b6ec3)
![{ displaystyle int { frac {R} {x}} , dx = R + { frac {b} {2}} int { frac {dx} {R}} + c int { frac { dx} {xR}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24f35cd51c18e0a4c87424a2b6c30332a492d7e7)
![{ displaystyle int { frac {R} {x ^ {2}}} , dx = - { frac {R} {x}} + a int { frac {dx} {R}} + { frac {b} {2}} int { frac {dx} {xR}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/70b2c31c5124e627a2f7e19a1ed23cd412b85bd6)
![{ displaystyle int { frac {x ^ {2} , dx} {R ^ {3}}} = { frac {(2b ^ {2} -4ac) x + 2bc} {a (4ac-b ^ {2}) R}} + { frac {1} {a}} int { frac {dx} {R}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6bd1d6dd570c6d9365debd2938e29a1a6646f696)
Интегралы с участием S = √топор + б
![{ displaystyle int S , dx = { frac {2S ^ {3}} {3a}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cee123de6f144edd243ba2b239d3986700183d72)
![int { frac {dx} {S}} = { frac {2S} {a}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6458c8a42c9321a984f3efc64b9045abd706ca70)
![{ displaystyle int { frac {dx} {xS}} = { begin {cases} - { dfrac {2} { sqrt {b}}} operatorname {arcoth} left ({ dfrac {S } { sqrt {b}}} right) & { mbox {(для}} b> 0, quad ax> 0 { mbox {)}} - { dfrac {2} { sqrt { b}}} operatorname {artanh} left ({ dfrac {S} { sqrt {b}}} right) & { mbox {(для}} b> 0, quad ax <0 { mbox {)}} { dfrac {2} { sqrt {-b}}} arctan left ({ dfrac {S} { sqrt {-b}}} right) & { mbox {( for}} b <0 { mbox {)}} end {case}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1449f96b3c8cfa7b2ae075541c0eb076e122c5f6)
![{ displaystyle int { frac {S} {x}} , dx = { begin {cases} 2 left (S - { sqrt {b}} , operatorname {arcoth} left ({ dfrac {S} { sqrt {b}}} right) right) & { mbox {(для}} b> 0, quad ax> 0 { mbox {)}} 2 left (S - { sqrt {b}} , operatorname {artanh} left ({ dfrac {S} { sqrt {b}}} right) right) & { mbox {(для}} b> 0 , quad ax <0 { mbox {)}} 2 left (S - { sqrt {-b}} arctan left ({ dfrac {S} { sqrt {-b}}} right) right) & { mbox {(для}} b <0 { mbox {)}} end {case}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e890c728ff6f9cb934acc74bb884650c4dbb98be)
![{ displaystyle int { frac {x ^ {n}} {S}} , dx = { frac {2} {a (2n + 1)}} left (x ^ {n} S-bn int { frac {x ^ {n-1}} {S}} , dx right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/220fa89474d8cd3fb5b29eaae008b5e630411a40)
![{ displaystyle int x ^ {n} S , dx = { frac {2} {a (2n + 3)}} left (x ^ {n} S ^ {3} -nb int x ^ { n-1} S , dx right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e352ae95c63969fb203a29980f43708691cdae29)
![{ displaystyle int { frac {1} {x ^ {n} S}} , dx = - { frac {1} {b (n-1)}} left ({ frac {S} { x ^ {n-1}}} + left (n - { frac {3} {2}} right) a int { frac {dx} {x ^ {n-1} S}} right )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc2bfa895a4d84e126d997c1f76d09f0712a321a)
Рекомендации
- Пирс, Бенджамин Осгуд (1929) [1899]. «Глава 3». Краткая таблица интегралов (3-е изд. Изм.). Бостон: Джинн и Ко, стр. 16–30.
- Милтон Абрамовиц и Ирен А. Стегун, ред., Справочник по математическим функциям с формулами, графиками и математическими таблицами 1972, Довер: Нью-Йорк. (Видеть Глава 3.)
- Градштейн Израиль Соломонович; Рыжик Иосиф Моисеевич; Геронимус Юрий Вениаминович; Цейтлин Михаил Юльевич; Джеффри, Алан (2015) [октябрь 2014]. Цвиллинджер, Даниэль; Молл, Виктор Гюго (ред.). Таблица интегралов, серий и продуктов. Перевод Scripta Technica, Inc. (8-е изд.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276. (Также несколько предыдущих выпусков.)