Теорема Артштейна - Artsteins theorem

Теорема Арстейна заявляет, что нелинейная динамическая система в контрольно-аффинной форме

имеет дифференцируемый функция управления-Ляпунова тогда и только тогда, когда он допускает регулярную стабилизирующую обратную связь ты(Икс), которая является локально липшицевой функцией на рп\{0}.[1]

Оригинальное доказательство Цви Арстейн исходит из неконструктивного аргумента. В 1989 г. Эдуардо Д. Зонтаг предоставил конструктивную версию этой теоремы, явно демонстрирующую обратную связь.[2][3]

Смотрите также

Рекомендации

  1. ^ Арстейн, Цви (1983). «Стабилизация с расслабленным контролем». Нелинейный анализ: теория, методы и приложения. 7 (11): 1163–1173. Дои:10.1016 / 0362-546X (83) 90049-4.
  2. ^ Зонтаг, Эдуардо Д. Универсальная конструкция теоремы Артштейна о нелинейной стабилизации
  3. ^ Зонтаг, Эдуардо Д. (1999), «Стабильность и стабилизация: неоднородности и влияние возмущений», в Clarke, F.H .; Stern, R.J .; Сабидусси, Г. (ред.), Нелинейный анализ, дифференциальные уравнения и управление, Springer, Нидерланды, стр. 551–598, arXiv:математика / 9902026, Дои:10.1007/978-94-011-4560-2_10, ISBN  9780792356660